14 resultados para spermatogonium


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lutosa brasiliensis, an Orthopteran Tettigonioidean belonging to the family Stenopelmatidae is referred to in this paper The spermatogonia are provided with 15 chromosomes, that is, 7 pairs of autosomes and a single sex chromosome. One pair of autosomes is much larger than the rest, two pairs are of median sized elements, and four pairs are of small ones. The daughter sex chromosomes show at anaphase great difficulty in reaching the poles, being left for a long while in the region of the equator where they are seen stretched one after the other on the same line or lying side by side in different positions. When the spermatogonium divides each daughter cell gets passively its sex chromosome. Though slowly, the sex chromosome finishes by beins enclosed in the nucleus. Its behavior may be attributed to a very weak kinetic activity of the centromere. In view of se pronouced an inertness of the sex chromosomes, two things may be expected : primary spermatocyte nuclei with two sex chromosomes, and primary spermatocytes with the sex chromosome lying outside the nucleus. Both situations have been discovered. The latter, together with the delay of the spermatogonial sex chromosome in reaching the poles suggested to the anther the mechanism which might have given origin to the cases in which the sex chromosome normally does not enter the nucleus to rejoin the autosomes, remaning outside in its own nucleus. It may well be supposed that accidents like that found in the present individual have turned to be a normal event in the course of the evolution of some species. Trie primary spermatocytes are provided with chromatoid bodies which remain visible all over the whole history of the cells and pass to one of the resulting secondary spermatocytes, the larger of them being found later in the area occupied by the tails of the spermatozoa. No relation of these bodies to nucleoli con?d be established. Pachytene and diplotene nuclei are normal Metaphase nuclei show 7 autosomal tetrads, one of which being much larger than the rest. At this stage the chromosomes have a pronounced tendency to form clumps. Even when they are separated from each other they generally appear competed by chromosomal substance. The sex chromosome Hes always in one of the poles, being enclosed in the nucleus formed there. The stickness of the chromosomes can also be noted at anaphase. Telophase chromosomes distend them- selves for giving origin to secondary spermatocyte nuclei in a state comparable to a beginning prophase. As the secondary spermatocytes approach metaphase the autosomes appear entirely divided except at the kinetochore where the chromatids remain united. In the division of the secondary spermatocytes nothing else merits special reference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The morphology of the cyst cells in Apis mellifera Linné, 1758, Scaptotrigona postica Latreille, 1804, and Melipona bicolor bicolor Lepeletier, 1836 testis, as well as the average number of spermatic cells are reported. The data indicates a supporting and nourrishing role of the cyst cells to the developing cystocytes. The counts of immature spermatozoa in the cysts show an average of 202.8 ± 21.2 spermatozoa for A. mellifera, 117.4 ± 8.68 for S. postica and 88.8 ± 15.57 for M. bicolor, which predict the occurrence of 8 mitotic cycles in the cystocytes of A. mellifera and 7 in the meliponines, considering that only one spermatozoom originates of each final spermatogonium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The action of colchicine upon the spermatogenesis of Triatoma infestans, (Hemipt. Heteroptera), has been studied and the different categories of giant spermatids that appear during the treatment have been compared with the nuclear volumes of the whole series of normal spermatogenetic stages. The following facts have been ascertained: 1) 4 hours after the treatment the gonial mitotic metaphases, and the 1st. and 2nd. metaphases of meiosis are stopped. The prophasic stages of meiosis and diakynesis appear to be normal. After 9 days of treatment, all the tetrads are broken in the meiotic metaphases and the cells appear with 44 and 22 chromosomes respectively, scattered in the cytoplasm. 2) At 9 days, practically all spermatogenetic stages have disappeared except for a few cysts of spermatogonia, and practically the whole testicle is full of cysts of spermatozoa and spermatid, with some large zones of necrosis with pycnotic nuclei. The spermatids appear to be of different sizes and the statistical analysis of the nuclear volumes gives a polymodal hystogram with 4 modes, whose volumes are in the ratio of 1:2:4:8. Ripe spermatozoa seem to have a certain volume variability, that has not been possible to analyse quantitatively. All these facts confirm what DOOLEY found in the colchicinized Orthoptera testicle. 3) The caryometric analysis conducted statistically on the normal stages of the spermatogenesis (resting spermatogonia, gonial prophases, leptotene, "confused stage", diakynesis, and spermatid) revealed the following facts: a) Considering the volume of the resting, spermatogonia as 1, their mitotic prophases have a volume of 2. Some rare prophases appear to have a volume of 4 and probably belong to tetraployd spermatogonia normally present in the testicle of Hemiptera. b) The first spermatocyte at the beginning of the auxocitary growth (leptotene) has a volume of 2, which is equal to that of them gonial prophase. It grows further during the "confused stage" and reduplicates, reaching thus the volume of 4. Diakynesis has a rather variable nuclear volume and it is higher than volume 4. This is probably of physico-chemical nature and not a growth increase. c) The spermatid at the beginning of the spermiogenetic process has a volume of 1 which is very constant and homogeneous. 4) These results can be summarized concluding that the meiotic process begins from a spermatogonium at the end of his mitotic interphasic growth (vol. 2) and instead of entering into the mitotic prophase transforms itself into the leptotene spermatocyte. During the diplotene ("confused stage") the volume of the nucleus doubles once more and reaches volume 4. In consequence of the two successive meiotic divisions the spermatid, although having an haploid number of chromosomes, has a nuclear volume of 1, just like the diploid spermatogonium. The interpretation of this strange result probably comes from the existence of the "tertiary split" in the chromosomes of the haploid set, that has been illustrated in the Hemiptera by HUGUES SCHRADER and in Orthoptera by MICKEY and co-workers. The tertiary split indicates that the chromosomes of the haploid set are constituted from almost two chromonemata, and this double constitution corresponds to the double cycle of reduplication that takes place during the spermatogenesis starting from the resting gonia. In Triatoma infestans the tertiary split appears in the chromosomes in the 1st. and 2nd. metaphases and in the diakynesis. In the blocked metaphases at the 9th. day of colchicinization some of the 44 elements scattered in the cytoplasm, show, when properly oriented, the split very clearly. Some new and strange facts revealed by SCHRADER and LEUCHTEMBERGER in Arvelius suggest the possibility of other interpretations of the rhythmic growth in special cases. There appears the necessity of more knowledge about the multiple or simple constitution of the chromosomes in somatic and spermatogonial mitosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente estudo teve como objetivo avaliar o rendimento da espermatogênese de cutias criadas em cativeiro, por intermédio das razões encontradas entre tipos celulares do epitélio seminífero. Os resultados apontaram que o rendimento da espermatogênese da cutia dos nove aos quatorze meses de idade não chegou a um ponto de estabilização. O coeficiente de eficiência de mitoses espermatogoniais não aumentou com a idade. O rendimento meiótico, o rendimento geral da espermatogênese e o índice de células de Sertoli mostraram variações numéricas em função da idade, entretanto, não detectadas estatisticamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Hoplias malabaricus primary spermatogonium shows a large nucleus, central nucleolus, and low electron-dense cytoplasm containing nuages. In cysts, they undergo several mitotic divisions with incomplete cytokinesis, giving rise to secondary spermatogonia. These are smaller than the primary spermatogonia and their nuclei have one or two eccentric nucleoli. Spermatocytes I can be identified by the presence of synaptonemal complexes. Spermatocytes II are smaller than spermatocytes 1, displaying roughly compacted chromatin. All these cell types remain interconnected by thick-walled intercellular bridges, which have membranous reinforcements during mitosis and meiosis. These cell types show a well-developed endomembranous system, one of the centrioles anchored to the plasma membrane and small nuages. Their mitochondria are large and circular, with few cristae. In the last generations of spermatogonia, the mitochondria are smaller, elongate and have more cristae. In the spermatocytes, the mitochondria are small and round. Similarities found in relation to germ cells of other teleosts are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The seminiferous tubules of Prochilodus scrofa present a coiled morphological arrangement with intertubular anastomoses and unrestricted spermatogonial distribution. The structural pattern of the seminiferous tubules is cystic, with cysts formed by cytoplasmic prolongations of Sertoli cells. Inside the cysts are observed different types of germ cells. The seminiferous tubules open individually on the ventral surface of the main testicular duct present in each testis. Each main testicular duct prolongs as a spermatic duct, fusing with the spermatic duct of the opposite side to form the common spermatic duct which opens into the urogenital papilla. The mature sperm cysts break and extravasate their content into the lumen of the seminiferous tubules from which the seminal fluid and the spermatozoa penetrate the main testicular duct, the spermatic duct and the common spermatic duct for semen ejaculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The karyotype, the histological structure of the testis and the synaptonemal complex (SC) of the mammalian species Tayassu tajacu, Tayassu pecari and of an interspecific male hybrid captured in nature were analysed. The specimens of T. tajacu (2n = 30) and T. pecan (2n = 26) exhibited seminiferous tubules with germ cells in all sperma to genesis stages. In the SC studies both species had a regular structure, easily identified in the autosomes and in the sex chromosomes. The hybrid (2n = 28) had seminiferous tubules with almost all germinal cells in the spermatogonium stage and only a few cells in the primary spermatocyte stage. Gross abnormalities in SC were observed. A few lateral elements showed regular or partially regular synapsis, other lateral elements were synapsed as multivalents, and most axial elements remained unsynapsed. The results suggest that the karyotypes of the parental species have sufficient differentiation to avoid chromosome synapsis. Alternatively, the hypothesis of the existence of genetic incompatibilities between the parental species is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spermatogenesis of 'corvina' P. squamosissimus starts from a stem cell that gives rise to germ cells. These cells are enveloped by Sertoli cells, forming cysts. The germ cells in the cysts are all at the same stage of development and are interconnected by cytoplasmic bridges. Spermatogonia are the largest germ cells. In the cysts, these cells differentiate into primary spermatogonia and secondary spermatogonia. The primary spermatogonia are isolated in the cyst and give rise to the secondary spermatogonia. After several mitotic divisions, they produce spermatocytes I, which can be identified by synaptonemal complexes in the nucleus. The spermatocytes I enter the first phase of meiosis to produce the spermatocytes II. These are not very frequently seen because they rapidly undergo a second phase of meiosis to produce spermatids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Amifostine is an efficient cytoprotector against toxicity caused by some chemotherapeutic drugs. Doxorubicin, a potent anticancer anthracycline, is known to produce spermatogenic damage even in low doses. Although some studies have suggested that amifostine does not confer protection to doxorubicin-induced testicular damage, schedules and age of treatment have different approach depending on the protocol. Thus, we proposed to investigate the potential cytoprotective action of amifostine against the damage provoked by doxorubicin to prepubertal rat testes (30-day-old) by assessing some macro and microscopic morphometric parameters 15, 30 and 60 days after the treatment; for fertility evaluation, quantitative analyses of sperm parameters and reproductive competence in the adult phase were also carried out.Methods: Thirty-day-old male rats were distributed into four groups: Doxorubicin (5 mg/kg), Amifostine (400 mg/kg), Amifostine/Doxorubicin (amifostine 15 minutes before doxorubicin) and Sham Control (0.9% saline solution). Standard One Way Anova parametric and Anova on Ranks non-parametric tests were applied according to the behavior of the obtained data; significant differences were considered when p < 0.05.Results: The rats killed 30 and 60 days after doxorubicin treatment showed diminution of seminiferous epithelium height and reduction on the frequency of tubular sections containing at least one type of differentiated spermatogonia; reduction of sperm concentration and motility and an increase of sperm anomalous forms where observed in doxorubicin-treated animals. All these parameters were improved in the Amifostine/Doxorubicin group only when compared to Doxorubicin group. Such reduction, however, still remained below the values obtained from the Sham Control group. Nevertheless, the reproductive competence of doxorubicin-treated rats was not improved by amifostine pre-administration.Conclusions: These results suggest that amifostine promotes a significant reduction of the doxorubicin long-term side effects on the seminiferous epithelium of prepubertal rats, which is reflected in the epidydimal fluid parameters in the adult phase. However, fertility status results suggest that such protection may not be effective against sperm DNA content damage. Further investigation of sperm DNA integrity must be carried out using amifostine and doxorubicin-treated experimental models. © 2010 Vendramini et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bullfrog stem spermatogonia, also named primordial germ cells (PGCs), show strong testosterone immunolabeling in winter, but no or weak testosterone immunoexpression in summer. Thus, the role of testosterone in these cells needs to be clarified. In this study, we proposed to evaluate whether PGCs express aromatase and estrogen receptors, and verify a possible role of estrogen in PGCs seasonal proliferation. Testes of male adult bullfrogs, collected in winter (WG) and summer (SG), were fixed and embedded in historesin, for quantitative analysis, or paraffin for immunohistochemistry (IHC). The number of haematoxylin/eosin stained PGCs/lobular area was obtained. Proliferating cell nuclear antigen (PCNA), aromatase, estrogen receptor β (ERβ) and PCNA/ERβ double immunolabeling were detected by IHC. The number of PCNA-positive PGCs and the histological score (HSCORE) of aromatase and ERβ immunolabeled PGCs were obtained. Although the number of PGCs increased significantly in WG, a high number of PCNA-positive PGCs was observed in summer. Moreover, aromatase and ERβ HSCORE was higher in SG than WG. The results indicate that PGCs express a seasonal proliferative activity; the low mitotic activity in winter is related to the maximal limit of germ cells which can be supported in the large lobules. In SG, the increased ERβ and aromatase HSCORE suggests that testosterone is converted into estrogen from winter to summer. Moreover, the parallelism between the high PGCs mitotic activity and ERβ immunoexpression suggest a participation of estrogen in the control of the PGCs seasonal proliferative activity which guarantee the formation of new germ cysts from summer to next autumn. © 2012 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artibeus planirostris is an endemic species of Phyllostomid bat from the Neotropical region. Some studies have indicated that it exhibits seasonal bimodal polyestry; however, others postulate that it may be able to produce young at any time during the year. Thus, the aim of this study was to evaluate the annual variations in testicular and epididymal parameters of this species in southeast Brazil and try to understand how the reproduction of this species is regulated in this environment. Sixty mature male specimens, collected between June 2009 and May 2010, were submitted to morphometric and immunohistochemical analysis. Our study showed that A. planirostris presented a continuously active pattern of spermatogenesis throughout the year, presenting spermatozoa inside its cauda epididymis in all months, but with two pronounced peaks of spermatogenic production, one in September and other in February. We propose that the males developed these two peaks in order to produce sufficient sperm for the reproduction in a harem system and to synchronize with the female reproductive cycle, which had a bimodal polyestric pattern. Control of this variation is directly linked to the expression of the androgen receptor (AR) in Sertoli cells and to serum testosterone levels, which appear to synchronize to establish these two peaks. In the months preceding the two peaks, the testis have a higher expression of the AR, which possibly stimulates the increase in PCNA, and drives a gradual increase in the testicular parameters. Taken together the results suggest that if sperm storage happens in this species, it is of short duration. © 2013 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spermatogonial stem cells (SSCs) either self-renew or differentiate into spermatogonia that further develop into spermatozoa. Self-renewal occurs when residing in a specific micro-environment (niche) while displacement from the niche would tip the signalling balance towards differentiation. Considering the cystic type of spermatogenesis in fish, the SSC candidates are single type A undifferentiated (A(und)) spermatogonia, enveloped by mostly one niche-forming Sertoli cell. When going through a self-renewal cell cycle, the resulting new single type Aund spermatogonium would have to recruit another Sertoli cell to expand the niche space, while a differentiating germ cell cyle would result in a pair of spermatogonia that remain in contact with their cyst-forming Sertoli cells. In zebrafish, thyroid hormone stimulates the proliferation of Sertoli cells and of type Aund spermatogonia, involving Igf3, a new member of the Igf family. In cystic spermatogenesis, type Aund spermatogonia usually do not leave the niche, so that supposedly the signalling in the niche changes when switching from self-renewal to differentiation. and rzAmh inhibited differentiation of type A(und) spermatogonia as well as Fsh-stimulated steroidogenesis. Thus, for Fsh to efficiently stimulate testis functions, Amh bioactivity should be dampened. We also discovered that Fsh increased Sertoli cell Igf3 gene and protein expression; rzIgf3 stimulated spermatogonial proliferation and Fsh-stimulated spermatogenesis was significantly impaired by inhibiting Igf receptor signaling. We propose that in zebrafish, Fsh is the major regulator of testis functions and, supported by other endocrine systems (e.g. thyroid hormone), regulates Leydig cell steroidogenesis as well as Sertoli cell number and growth factor production to promote spermatogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente estudo teve como objetivo avaliar o rendimento da espermatogênese de cutias criadas em cativeiro, por intermédio das razões encontradas entre tipos celulares do epitélio seminífero. Os resultados apontaram que o rendimento da espermatogênese da cutia dos nove aos quatorze meses de idade não chegou a um ponto de estabilização. O coeficiente de eficiência de mitoses espermatogoniais não aumentou com a idade. O rendimento meiótico, o rendimento geral da espermatogênese e o índice de células de Sertoli mostraram variações numéricas em função da idade, entretanto, não detectadas estatisticamente.