993 resultados para special relativity
Resumo:
Singular surface theory and ray theory are used to study the propagation of a weak discontinuity in an arbitrarily moving gas within the framework of special relativity. A differential equation is obtained describing the variation of the strength of the discontinuity along rays.
Resumo:
We study thermodynamics of an ideal gas in doubly special relativity. A new type of special functions (which we call ``incomplete modified Bessel functions'') emerge. We obtain a series solution for the partition function and derive thermodynamic quantities. We observe that doubly special relativity thermodynamics is nonperturbative in the special relativity and massless limits. A stiffer equation of state is found.
Resumo:
A special relativity based on the de Sitter group is introduced, which is a theory that might hold up in the presence of a non-vanishing cosmological constant. Like ordinary special relativity, it retains the quotient character of spacetime, and a notion of homogeneity. As a consequence, the underlying spacetime will be a de Sitter spacetime, whose associated kinematics will differ from that of ordinary special relativity. The corresponding modified notions of energy and momentum are obtained, and the exact relationship between them, which is invariant under a re-scaling of the involved quantities, explicitly exhibited. Since the de Sitter group can be considered a particular deformation of the Poincare group, this theory turns out to be a specific kind of deformed (or doubly) special relativity. Some experimental consequences, as well as the causal structure of spacetime-modified by the presence of the de Sitter horizon-are briefly discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Selleri's arguments that a consideration of noninertial reference frames in the framework of special relativity identify absolute simultaneity as being Nature's choice of synchronization are considered. In the case of rectilinearly accelerating rockets, it is argued by considering two rockets which maintain a fixed proper separation rather than a fixed separation relative to the inertial frame in which they start from rest, that what seems the most natural choice for a simultaneity convention is problem-dependent and that Einstein's definition is the most natural (though still conventional) choice in this case. In addition, the supposed problems special relativity has with treating a rotating disk, namely how a pulse of light traveling around the circumference of the disk can have a local speed of light equal to c everywhere but a global speed not equal to c, and how coordinate transformations to the disk can give the Lorentz transformations in the limit of large disk radius but small angular velocity, are addressed. It is shown that the theory of Fermi frames solves both of these problems. It is also argued that the question of defining simultaneity relative to a uniformly rotating disk does riot need to be resolved in order to resolve Ehrenfest's paradox.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Poincar, group generalizes the Galilei group for high-velocity kinematics. The de Sitter group is assumed to go one step further, generalizing Poincar, as the group governing high-energy kinematics. In other words, ordinary special relativity is here replaced by de Sitter relativity. In this theory, the cosmological constant I > is no longer a free parameter, and can be determined in terms of other quantities. When applied to the whole universe, it is able to predict the value of I > and to explain the cosmic coincidence. When applied to the propagation of ultra-high energy photons, it gives a good estimate of the time delay observed in extragalactic gamma-ray flares. It can, for this reason, be considered a new paradigm to approach the quantum gravity problem.
Resumo:
In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for quantum mechanics. © 2007 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work deals with the theory of Relativity and its diffusion in Italy in the first decades of the XX century. Not many scientists belonging to Italian universities were active in understanding Relativity, but two of them, Max Abraham and Tullio Levi-Civita left a deep mark. Max Abraham engaged a substantial debate against Einstein between 1912 and 1914 about electromagnetic and gravitation aspects of the theories. Levi-Civita played a fundamental role in giving Einstein the correct mathematical instruments for the General Relativity formulation since 1915. This work, which doesn't have the aim of a mere historical chronicle of the events, wants to highlight two particular perspectives: on one hand, the importance of Abraham-Einstein debate in order to clarify the basis of Special Relativity, to observe the rigorous logical structure resulting from a fragmentary reasoning sequence and to understand Einstein's thinking; on the other hand, the originality of Levi-Civita's approach, quite different from the Einstein's one, characterized by the introduction of a method typical of General Relativity even to Special Relativity and the attempt to hide the two Einstein Special Relativity postulates.
Resumo:
This paper explains, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the Element of Democracy Theory may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the Element of Democracy Theory meets these same parameters, it could settle the debate concerning the definition of democracy. This will be shown firstly by discussing why no one has yet achieved a universal definition of democracy; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the Element of Democracy match the parameters.
Resumo:
This paper explains, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the Element of Democracy Theory may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the Element of Democracy Theory meets these same parameters, it could settle the debate concerning the definition of democracy. This will be shown firstly by discussing why no one has yet achieved a universal definition of democracy; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the Element of Democracy match the parameters.
Resumo:
This paper argues, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the theory of ‘basic democracy’ may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the theory of ‘basic democracy’ may meet these same parameters, it could settle the debate concerning the definition of democracy. This will be argued firstly by discussing what the theory of ‘basic democracy’ is and why it differs from previous work; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the theory of ‘basic democracy’ may match the parameters.
Resumo:
Using the singular surface theory, an expression for the jump in vorticity across a shock wave of arbitrary shape propagating in a uniform, perfect fluid occupying the space-time of special relativity, has been derived. It has been shown that the jump in vorticity across a shock of given strength and curvature depends only on the velocity of the medium ahead of the shock.