970 resultados para spatial statistics of areas
Resumo:
Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.
Resumo:
This research aims at studying spatial autocorrelation of Landsat/TM based on normalized difference vegetation index (NDVI) and green vegetation index (GVI) of soybean of the western region of the State of Paraná. The images were collected during the 2004/2005 crop season. The data were grouped into five vegetation index classes of equal amplitude, to create a temporal map of soybean within the crop cycle. Moran I and Local Indicators of Spatial Autocorrelation (LISA) indices were applied to study the spatial correlation at the global and local levels, respectively. According to these indices, it was possible to understand the municipality-based profiles of tillage as well as to identify different sowing periods, providing important information to producers who use soybean yield data in their planning.
Resumo:
Models of the dynamics of nitrogen in soil (soil-N) can be used to aid the fertilizer management of a crop. The predictions of soil-N models can be validated by comparison with observed data. Validation generally involves calculating non-spatial statistics of the observations and predictions, such as their means, their mean squared-difference, and their correlation. However, when the model predictions are spatially distributed across a landscape the model requires validation with spatial statistics. There are three reasons for this: (i) the model may be more or less successful at reproducing the variance of the observations at different spatial scales; (ii) the correlation of the predictions with the observations may be different at different spatial scales; (iii) the spatial pattern of model error may be informative. In this study we used a model, parameterized with spatially variable input information about the soil, to predict the mineral-N content of soil in an arable field, and compared the results with observed data. We validated the performance of the N model spatially with a linear mixed model of the observations and model predictions, estimated by residual maximum likelihood. This novel approach allowed us to describe the joint variation of the observations and predictions as: (i) independent random variation that occurred at a fine spatial scale; (ii) correlated random variation that occurred at a coarse spatial scale; (iii) systematic variation associated with a spatial trend. The linear mixed model revealed that, in general, the performance of the N model changed depending on the spatial scale of interest. At the scales associated with random variation, the N model underestimated the variance of the observations, and the predictions were correlated poorly with the observations. At the scale of the trend, the predictions and observations shared a common surface. The spatial pattern of the error of the N model suggested that the observations were affected by the local soil condition, but this was not accounted for by the N model. In summary, the N model would be well-suited to field-scale management of soil nitrogen, but suited poorly to management at finer spatial scales. This information was not apparent with a non-spatial validation. (c),2007 Elsevier B.V. All rights reserved.
Resumo:
Background: Previous magnetic resonance imaging (MRI) studies in young patients with bipolar disorder indicated the presence of grey matter concentration changes as well as microstructural alterations in white matter in various neocortical areas and the corpus callosum. Whether these structural changes are also present in elderly patients with bipolar disorder with long-lasting clinical evolution remains unclear. Methods: We performed a prospective MRI study of consecutive elderly, euthymic patients with bipolar disorder and healthy, elderly controls. We conducted a voxel-based morphometry (VBM) analysis and a tract-based spatial statistics (TBSS) analysis to assess fractional anisotropy and longitudinal, radial and mean diffusivity derived by diffusion tensor imaging (DTI). Results: We included 19 patients with bipolar disorder and 47 controls in our study. Fractional anisotropy was the most sensitive DTI marker and decreased significantly in the ventral part of the corpus callosum in patients with bipolar disorder. Longitudinal, radial and mean diffusivity showed no significant between-group differences. Grey matter concentration was reduced in patients with bipolar disorder in the right anterior insula, head of the caudate nucleus, nucleus accumbens, ventral putamen and frontal orbital cortex. Conversely, there was no grey matter concentration or fractional anisotropy increase in any brain region in patients with bipolar disorder compared with controls. Limitations: The major limitation of our study is the small number of patients with bipolar disorder. Conclusion: Our data document the concomitant presence of grey matter concentration decreases in the anterior limbic areas and the reduced fibre tract coherence in the corpus callosum of elderly patients with long-lasting bipolar disorder.
Resumo:
We used a network of 20 carbon dioxide- and octenol-supplemented light traps to sample adult mosquitoes throughout Russell Island in southern Moreton Bay, south-east Queensland. Between February and April 2001, an estimated 1365 564 adult female mosquitoes were collected. In contrast to an average catch of 9754 female mosquitoes per trap night on Russell Island, reference traps set on Macleay Island and on the mainland returned average catches of 3172 and 222, respectively. On Russell Island, Ochlerotatus vigilax (Skuse), Coquillettidia linealis (Skuse), Culex annulirostris Skuse and Verrallina funerea (Theobald), known or suspected vectors of Ross River (RR) and/or Barmah Forest (BF) viruses, comprised 89.6% of the 25 taxa collected. When the spatial distributions of the above species were mapped and analysed using local spatial statistics, all were found to be present in highest numbers towards the southern end of the island during most of the 7 weeks. This indicated the presence of more suitable adult harbourage sites and/or suboptimal larval control efficacy. As immature stages and the breeding habitat of Cq. linealis are as yet undescribed, this species in particular presents a considerable impediment to proposed development scenarios. The method presented here of mapping the numbers of mosquitoes throughout a local government area allows specific areas that have high vector numbers to be defined.
Resumo:
OBJECTIVE To analyze the spatial distribution of homicide mortality in the state of Bahia, Northeastern Brazil. METHODS Ecological study of the 15 to 39-year old male population in the state of Bahia in the period 1996-2010. Data from the Mortality Information System, relating to homicide (X85-Y09) and population estimates from the Brazilian Institute of Geography and Statistics were used. The existence of spatial correlation, the presence of clusters and critical areas of the event studied were analyzed using Moran’s I Global and Local indices. RESULTS A non-random spatial pattern was observed in the distribution of rates, as was the presence of three clusters, the first in the north health district, the second in the eastern region, and the third cluster included townships in the south and the far south of Bahia. CONCLUSIONS The homicide mortality in the three different critical areas requires further studies that consider the socioeconomic, cultural and environmental characteristics in order to guide specific preventive and interventionist practices.
Resumo:
INTRODUCTION: The prevalence and intensity of geohelminth infections and schistosomiasis remain high in the rural areas of Zona da Mata, Pernambuco (ZMP), Brazil, where these parasites still represent a significant public health problem. The present study aimed to spatially assess the occurrences of schistosomiasis and geohelminthiasis in the ZMP. METHODS: The ZMP has a population of 1,132,544 inhabitants, formed by 43 municipalities. An ecological study was conducted, using secondary data relating to positive human cases and parasite loads of schistosomiasis and positive human cases of geohelminthiasis that were worked up in Excel 2007. We used the coordinates of the municipal headquarters to represent the cities which served as the unit of analysis of this study. The Kernel estimator was used to spatially analyze the data and identify distribution patterns and case densities, with analysis done in ArcGIS software. RESULTS: Spatial analysis from the Kernel intensity estimator made it possible to construct density maps showing that the northern ZMP was the region with the greatest number of children infected with parasites and the populations most intensely infected by Schistosoma mansoni. In relation to geohelminths, there was higher spatial distribution of cases of Ascaris lumbricoides and Trichuris trichiura in the southern ZMP, and greater occurrence of hookworms in the northern/central ZMP. CONCLUSIONS: Despite several surveys and studies showing occurrences of schistosomiasis and geohelminthiasis in the ZMP, no preventive measures that are known to have been effective in decreasing these health hazards have yet been implemented in the endemic area.
Resumo:
IntroductionThe objective of this study was to analyze the spatial behavior of the occurrence of trachoma cases detected in the City of Bauru, State of São Paulo, Brazil, in 2006 in order to use the information collected to set priority areas for optimization of health resources.Methodsthe trachoma cases identified in 2006 were georeferenced. The data evaluated were: schools where the trachoma cases studied, data from the 2000 Census, census tract, type of housing, water supply conditions, distribution of income and levels of education of household heads. In the Google Earth® software and TerraView® were made descriptive spatial analysis and estimates of the Kernel. Each area was studied by interpolation of the density surfaces exposing events to facilitate to recognize the clusters.ResultsOf the 66 cases detected, only one (1.5%) was not a resident of the city's outskirts. A positive association was detected of trachoma cases and the percentage of heads of household with income below three minimum wages and schooling under eight years of education.ConclusionsThe recognition of the spatial distribution of trachoma cases coincided with the areas of greatest social inequality in Bauru City. The micro-areas identified are those that should be prioritized in the rationalization of health resources. There is the possibility of using the trachoma cases detected as an indicator of performance of micro priority health programs.
Resumo:
Introduction Leprosy remains a relevant public health issue in Brazil. The objective of this study was to analyze the spatial distribution of new cases of leprosy and to detect areas with higher risks of disease in the City of Vitória. Methods The study was ecologically based on the spatial distribution of leprosy in the City of Vitória, State of Espírito Santo between 2005 and 2009. The data sources used came from the available records of the State Health Secretary of Espírito Santo. A global and local empirical Bayesian method was used in the spatial analysis to produce a leprosy risk estimation, and the fluctuation effect was smoothed from the detection coefficients. Results The study used thematic maps to illustrate that leprosy is distributed heterogeneously between the neighborhoods and that it is possible to identify areas with high risk of disease. The Pearson correlation coefficient of 0.926 (p = 0.001) for the Local Method indicated highly correlated coefficients. The Moran index was calculated to evaluate correlations between the incidences of adjoining districts. Conclusions We identified the spatial contexts in which there were the highest incidence rates of leprosy in Vitória during the studied period. The results contribute to the knowledge of the spatial distribution of leprosy in the City of Vitória, which can help establish more cost-effective control strategies because they indicate specific regions and priority planning activities that can interfere with the transmission chain.
Resumo:
INTRODUCTION: Visceral leishmaniasis (VL) is a zoonosis of great importance to public health and is considered a neglected disease by the World Health Organization. The disease has expanded and become more prevalent in urban areas in Brazil. METHODS: Geospatial analyses were performed and thematic maps of the triad of the disease were produced for the study period (2003-2012) in the urban area of the municipality of Rondonópolis in the midwestern State of Mato Grosso (MT), Brazil, TerraView 4.2.2 software was used for the analyses. RESULTS: A total of 87.9% of the 186 confirmed human cases of VL were cured. Children between the ages of 1 and 4 were the most affected. Registered deaths were predominant among adults aged 60 years or older. The urban area of the municipality consists of eight strata and 12 census districts include 237 neighborhoods. All sectors had confirmed cases of VL. During the study period, human cases of the disease were recorded in 90 neighborhoods. The 23 deaths from the disease were distributed in 21 neighborhoods. Sandflies carrying the parasite were captured in 192 out of 200 neighborhoods evaluated for the presence of the VL vector. The presence of dogs carrying the parasite was confirmed in, 140 out of 154 surveyed neighborhoods. CONCLUSIONS: The data demonstrated the endemic nature of VL, with a high percentage of infected children, a high distribution of canine infection, and a wide adaptation and dispersal of the vectors in the urban environment. These results, illustrate the process of urbanization of VL in the municipality of Rondonópolis, MT, Brazil.
Resumo:
In the areas where irrigated rice is grown in the south of Brazil, few studies have been carried out to investigate the spatial variability structure of soil properties and to establish new forms of soil management as well as determine soil corrective and fertilizer applications. In this sense, this study had the objective of evaluating the spatial variability of chemical, physical and biological soil properties in a lowland area under irrigated rice cultivation in the conventional till system. For this purpose, a 10 x 10 m grid of 100 points was established, in an experimental field of the Embrapa Clima Temperado, in the County of Capão do Leão, State of Rio Grande do Sul. The spatial variability structure was evaluated by geostatistical tools and the number of subsamples required to represent each soil property in future studies was calculated using classical statistics. Results showed that the spatial variability structure of sand, silt, SMP index, cation exchange capacity (pH 7.0), Al3+ and total N properties could be detected by geostatistical analysis. A pure nugget effect was observed for the nutrients K, S and B, as well as macroporosity, mean weighted diameter of aggregates, and soil water storage. The cross validation procedure, based on linear regression and the determination coefficient, was more efficient to evaluate the quality of the adjusted mathematical model than the degree of spatial dependence. It was also concluded that the combination of classical with geostatistics can in many cases simplify the soil sampling process without losing information quality.
Resumo:
This paper takes the shelf and digs into the complex population’s age structure of Catalan municipalities for the year 2009. Catalonia is a very heterogeneous territory, and age pyramids vary considerably across different areas of the territory, existing geographical factors shaping municipalities’ age distributions. By means of spatial statistics methodologies, this piece of research tries to assess which spatial factors determine the location, scale and shape of local distributions. The results show that there exist different distributional patterns across the geography according to specific local determinants. Keywords: Spatial Models. JEL Classification: C21.
Resumo:
The technique of precision agriculture and soil-landscape allows delimiting areas for localized management, allowing a localized application of agricultural inputs and thereby may contribute to preservation of natural resources. Therefore, the objective of this work was to characterize the spatial variability of chemical properties and clay content in the context of soil-landscape relationship in a Latosol (Oxisol) under cultivation of citrus. Soil samples were collected at a depth of 0.0-0.2 m in an area of 83.5 ha planted with citrus, as a 50-m intervals grid, with 129 points in concave terrain and 206 points in flat terrain, totaling 335 points. Values for the variables that express the chemical characteristics and clay content of soil properties were analyzed with descriptive statistics and geostatistical modeling of semivariograms for making maps of kriging. The values of range and kriging maps indicated higher variability in the shape of concave topography (top segment) compared with the shape of flat topography (slope and hillside segments below). The identification of different forms of terrain proved to be efficient in understanding the spatial variability of chemical properties and clay content of soil under cultivation of citrus.
Resumo:
Using a unique neighborhood crime dataset for Bogotá in 2011, this study uses a spatial econometric approach and examines the role of socioeconomic and agglomeration variables in explaining the variance of crime. It uses two different types of crime, violent crime represented in homicides and property crime represented in residential burglaries. These two types of crime are then measured in non-standard crime statistics that are created as the area incidence for each crime in the neighborhood. The existence of crime hotspots in Bogotá has been shown in most of the literature, and using these non-standard crime statistics at this neighborhood level some hotspots arise again, thus validating the use of a spatial approach for these new crime statistics. The final specification includes socioeconomic, agglomeration, land-use and visual aspect variables that are then included in a SARAR model an estimated by the procedure devised by Kelejian and Prucha (2009). The resulting coefficients and marginal effects show the relevance of these crime hotspots which is similar with most previous studies. However, socioeconomic variables are significant and show the importance of age, and education. Agglomeration variables are significant and thus more densely populated areas are correlated with more crime. Interestingly, both types of crimes do not have the same significant covariates. Education and young male population have a different sign for homicide and residential burglaries. Inequality matters for homicides while higher real estate valuation matters for residential burglaries. Finally, density impacts positively both crimes.
Resumo:
Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of λp=0.25 . The flow statistics analysed are mean streamwise velocity ( u− ), shear stress ( u′w′−−−− ), turbulent kinetic energy (k) and dispersive stress fraction ( u˜w˜ ). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.