994 resultados para spatial reasoning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experiment was conducted to investigate the process of reasoning about directions in an egocentric space. Each participant walked through a corridor containing an angular turn ranging in size from 0° to 90°, in 15° increments. A direction was given to participants at the entrance of the corridor and they were asked to answer this direction at the end of this corridor. Considering the fact that participants had to reason the direction in the featureless corridor, two hypotheses were proposed: (i) reasoning about directions falls into qualitative reasoning by using a small number of coarse angular categories (four 90° categories or eight 45° categories: 90° categories consist of front, back, left, right; 45° categories consist of 90° categories and the four intermediates) that reference axes generate; (ii) reasoning about directions would be done by recalling the rotation angle from the traveling direction to the direction that participants tried to answer. In addition, the configuration of reference axes that participants employed was examined. Both hypotheses were supported, and the data designated that reference axes consisted of eight directions: a pair of orthogonal axes and diagonals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the architecture of the knowledge based system (KBS) component of Smartfire, a fire field modelling tool for use by members of the fire safety engineering community who are not expert in modelling techniques. The KBS captures the qualitative reasoning of an experienced modeller in the assessment of room geometries, so as to set up the important initial parameters of the problem. Fire modelling expertise is an example of geometric and spatial reasoning, which raises representational problems. The approach taken in this project is a qualitative representation of geometric room information based on Forbus’ concept of a metric diagram. This takes the form of a coarse grid, partitioning the domain in each of the three spatial dimensions. Inference over the representation is performed using a case-based reasoning (CBR) component. The CBR component stores example partitions with key set-up parameters; this paper concentrates on the key parameter of grid cell distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic relationships between certain regions of space are formulated in natural language in everyday situations. For example, a customer specifies the outline of his future home to the architect by indicating which rooms should be close to each other. Qualitative spatial reasoning as an area of artificial intelligence tries to develop a theory of space based on similar notions. In formal ontology and in ontological computer science, mereotopology is a first-order theory, embodying mereological and topological concepts, of the relations among wholes, parts, parts of parts, and the boundaries between parts. We shall introduce abstract relation algebras and present their structural properties as well as their connection to algebras of binary relations. This will be followed by details of the expressiveness of algebras of relations for region based models. Mereotopology has been the main basis for most region based theories of space. Since its earliest inception many theories have been proposed for mereotopology in artificial intelligence among which Region Connection Calculus is most prominent. The expressiveness of the region connection calculus in relational logic is far greater than its original eight base relations might suggest. In the thesis we formulate ways to automatically generate representable relation algebras using spatial data based on region connection calculus. The generation of new algebras is a two pronged approach involving splitting of existing relations to form new algebras and refinement of such newly generated algebras. We present an implementation of a system for automating aforementioned steps and provide an effective and convenient interface to define new spatial relations and generate representable relational algebras.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El libro presenta un conjunto de tests de aptitud (para medir el potencial de éxito de una persona) y tests de inteligencia normalizados, cada vez más utilizados en procesos de contratación, selección y evaluación de personal. Organizados en cuatro apartados, tests de aptitud verbal, espacial, numérica y tests de inteligencia, permiten trabajar distintas áreas (significado de palabras, gramática y comprensión, aptitud verbal avanzada, análisis lógico, cálculo mental, secuencias numéricas y problemas numéricos) para mejorar las habilidades verbales, numéricas y de razonamiento del lector.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a model for space in which an autonomous agent acquires information about its environment. The agent uses a predefined exploration strategy to build a map allowing it to navigate and deduce relationships between points in space. The shapes of objects in the environment are represented qualitatively. This shape information is deduced from the agent's motion. Normally, in a qualitative model, directional information degrades under transitive deduction. By reasoning about the shape of the environment, the agent can match visual events to points on the objects. This strengthens the model by allowing further relationships to be deduced. In particular, points that are separated by long distances, or complex surfaces, can be related by line-of-sight. These relationships are deduced without incorporating any metric information into the model. Examples are given to demonstrate the use of the model.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of deriving spatial relationships between objects in general requires high lever' abstract representation, and it would pose difficulties even for human observer. Based on a formalism for spatial layouts proposed earlier, we present methods for deducing spatial relations between objects by an active, sighted agent in a large-scale environment. The deduction of spatial relations is based on simple visual clues, and thus this technique is more feasible than schemes that rely on complex object recognition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reasoning about motion is an important part of our commonsense knowledge, involving fluent spatial reasoning. This work studies the qualitative and geometric knowledge required to reason in a world that consists of balls moving through space constrained by collisions with surfaces, including dissipative forces and multiple moving objects. An analog geometry representation serves the program as a diagram, allowing many spatial questions to be answered by numeric calculation. It also provides the foundation for the construction and use of place vocabulary, the symbolic descriptions of space required to do qualitative reasoning about motion in the domain. The actual motion of a ball is described as a network consisting of descriptions of qualitatively distinct types of motion. Implementing the elements of these networks in a constraint language allows the same elements to be used for both analysis and simulation of motion. A qualitative description of the actual motion is also used to check the consistency of assumptions about motion. A process of qualitative simulation is used to describe the kinds of motion possible from some state. The ambiguity inherent in such a description can be reduced by assumptions about physical properties of the ball or assumptions about its motion. Each assumption directly rules out some kinds of motion, but other knowledge is required to determine the indirect consequences of making these assumptions. Some of this knowledge is domain dependent and relies heavily on spatial descriptions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In many multimedia application systems, it is not the final goal to retrieve the relevant multimedia information from different multimedia information sources. Rather, post-processing of the retrieved multimedia information is needed. For example, the retrieved information is used as “known facts”. The systems will do some reasoning to obtain further conclusions based on these multimedia form “known facts”. We call this reasoning with multimedia information. Most current research work in multimedia information processing is focused on multimedia information retrieval, but post-processing the retrieved information is more or less ignored. This paper explores the way to tackle this problem by using symbolic projection. A case study of reasoning with still image information is presented. Some extensions to symbolic projection- introducing auxiliary pictorial objects in symbolic pictures that need to be processed-are discussed. We expect this paper will stimulate further research on this important but ignored topic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the fundamental issues in building autonomous agents is to be able to sense, represent and react to the world. Some of the earlier work [Mor83, Elf90, AyF89] has aimed towards a reconstructionist approach, where a number of sensors are used to obtain input that is used to construct a model of the world that mirrors the real world. Sensing and sensor fusion was thus an important aspect of such work. Such approaches have had limited success, and some of the main problems were the issues of uncertainty arising from sensor error and errors that accumulated in metric, quantitative models. Recent research has therefore looked at different ways of examining the problems. Instead of attempting to get the most accurate and correct model of the world, these approaches look at qualitative models to represent the world, which maintain relative and significant aspects of the environment rather than all aspects of the world. The relevant aspects of the world that are retained are determined by the task at hand which in turn determines how to sense. That is, task directed or purposive sensing is used to build a qualitative model of the world, which though inaccurate and incomplete is sufficient to solve the problem at hand. This paper examines the issues of building up a hierarchical knowledge representation of the environment with limited sensor input that can be actively acquired by an agent capable of interacting with the environment. Different tasks require different aspects of the environment to be abstracted out. For example, low level tasks such as navigation require aspects of the environment that are related to layout and obstacle placement. For the agent to be able to reposition itself in an environment, significant features of spatial situations and their relative placement need to be kept. For the agent to reason about objects in space, for example to determine the position of one object relative to another, the representation needs to retain information on relative locations of start and finish of the objects, that is endpoints of objects on a grid. For the agent to be able to do high level planning, the agent may need only the relative position of the starting point and destination, and not the low level details of endpoints, visual clues and so on. This indicates that a hierarchical approach would be suitable, such that each level in the hierarchy is at a different level of abstraction, and thus suitable for a different task. At the lowest level, the representation contains low level details of agent's motion and visual clues to allow the agent to navigate and reposition itself. At the next level of abstraction the aspects of the representation allow the agent to perform spatial reasoning, and finally the highest level of abstraction in the representation can be used by the agent for high level planning.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The analysis of spatial relations among objects in an image is an important vision problem that involves both shape analysis and structural pattern recognition. In this paper, we propose a new approach to characterize the spatial relation along, an important feature of spatial configurations in space that has been overlooked in the literature up to now. We propose a mathematical definition of the degree to which an object A is along an object B, based on the region between A and B and a degree of elongatedness of this region. In order to better fit the perceptual meaning of the relation, distance information is included as well. In order to cover a more wide range of potential applications, both the crisp and fuzzy cases are considered. In the crisp case, the objects are represented in terms of 2D regions or ID contours, and the definition of the alongness between them is derived from a visibility notion and from the region between the objects. However, the computational complexity of this approach leads us to the proposition of a new model to calculate the between region using the convex hull of the contours. On the fuzzy side, the region-based approach is extended. Experimental results obtained using synthetic shapes and brain structures in medical imaging corroborate the proposed model and the derived measures of alongness, thus showing that they agree with the common sense. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes a logic-based formalism for qualitative spatial reasoning with cast shadows (Perceptual Qualitative Relations on Shadows, or PQRS) and presents results of a mobile robot qualitative self-localisation experiment using this formalism. Shadow detection was accomplished by mapping the images from the robot’s monocular colour camera into a HSV colour space and then thresholding on the V dimension. We present results of selflocalisation using two methods for obtaining the threshold automatically: in one method the images are segmented according to their grey-scale histograms, in the other, the threshold is set according to a prediction about the robot’s location, based upon a qualitative spatial reasoning theory about shadows. This theory-driven threshold search and the qualitative self-localisation procedure are the main contributions of the present research. To the best of our knowledge this is the first work that uses qualitative spatial representations both to perform robot self-localisation and to calibrate a robot’s interpretation of its perceptual input.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aims to understand individual differences in preschooler’s early comprehension of spatial language. Spatial language is defined as terms describing location, direction, shape, dimension, features, orientation, and quantity (e.g location, shape). Spatial language is considered to be one of the important factors in the development of spatial reasoning in the preschool years (Pruden, Levine, & Huttenlocher, 2011). In recent years, research has shown spatial reasoning is an important predictor of successes in STEM (Science, Technology, Engineering, and Mathematics) fields (e.g. Shea, Lubinski & Benbow, 2001; Wai, Lubinksi &Benbow, 2009). The current study focuses on when children begin to comprehend spatial terms, while previous work has mainly focused on production of spatial language. Identifying when children begin to comprehend spatial terms could lead to a better understanding of how spatial reasoning develops. We use the Intermodal Preferential Looking paradigm (IPLP) to examine three-year-old children’s ability to map spatial terms to visual representations. Fourteen spatial terms were used to test these abilities (e.g. bottom, diamond, longer). For each test trial children were presented with two different stimuli simultaneously on the left and right sides of a television screen. A female voice prompted the child to find the target spatial relation (e.g. “can you find the boy pointing to the bottom of the window”; Figure 1). A Tobii X60 eye-tracker was used to record the child’s eye gaze for each trial. For each child the proportion of looking to the target image divided by their total looking during the trial was calculated; this served as the dependent variable. Proportions above .50 indicated that the child had correctly mapped the spatial term to the target image. Preliminary data shows that the number of words comprehended in the IPLP task is correlated to parental report of the child’s comprehension of spatial terms (r[14]=.500, p<.05).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aims to understand individual differences in preschooler’s early comprehension of spatial language. Spatial language is defined as terms describing location, direction, shape, dimension, features, orientation, and quantity (e.g location, shape). Spatial language is considered to be one of the important factors in the development of spatial reasoning in the preschool years (Pruden, Levine, & Huttenlocher, 2011). In recent years, research has shown spatial reasoning is an important predictor of successes in STEM (Science, Technology, Engineering, and Mathematics) fields (e.g. Shea, Lubinski & Benbow, 2001; Wai, Lubinksi &Benbow, 2009). The current study focuses on when children begin to comprehend spatial terms, while previous work has mainly focused on production of spatial language. Identifying when children begin to comprehend spatial terms could lead to a better understanding of how spatial reasoning develops. We use the Intermodal Preferential Looking paradigm (IPLP) to examine three-year-old children’s ability to map spatial terms to visual representations. Fourteen spatial terms were used to test these abilities (e.g. bottom, diamond, longer). For each test trial children were presented with two different stimuli simultaneously on the left and right sides of a television screen. A female voice prompted the child to find the target spatial relation (e.g. “can you find the boy pointing to the bottom of the window”; Figure 1). A Tobii X60 eye-tracker was used to record the child’s eye gaze for each trial. For each child the proportion of looking to the target image divided by their total looking during the trial was calculated; this served as the dependent variable. Proportions above .50 indicated that the child had correctly mapped the spatial term to the target image. Preliminary data shows that the number of words comprehended in the IPLP task is correlated to parental report of the child’s comprehension of spatial terms (r[14]=.500, p<.05).