939 resultados para spatial processes
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim Our aims were to compare the composition of testate amoeba (TA) communities from Santa Cruz Island, Galápagos Archipelago, which are likely in existence only as a result of anthropogenic habitat transformation, with similar naturally occurring communities from northern and southern continental peatlands. Additionally, we aimed at assessing the importance of niche-based and dispersal-based processes in determining community composition and taxonomic and functional diversity. Location The humid highlands of the central island of Santa Cruz, Galápagos Archipelago. Methods We survey the alpha, beta and gamma taxonomic and functional diversities of TA, and the changes in functional traits along a gradient of wet to dry habitats. We compare the TA community composition, abundance and frequency recorded in the insular peatlands with that recorded in continental peatlands of Northern and Southern Hemispheres. We use generalized linear models to determine how environmental conditions influence taxonomic and functional diversity as well as the mean values of functional traits within communities. We finally apply variance partitioning to assess the relative importance of niche- and dispersal-based processes in determining community composition. Results TA communities in Santa Cruz Island were different from their Northern Hemisphere and South American counterparts with most genera considered as characteristic for Northern Hemisphere and South American Sphagnum peatlands missing or very rare in the Galápagos. Functional traits were most correlated with elevation and site topography and alpha functional diversity to the type of material sampled and site topography. Community composition was more strongly correlated with spatial variables than with environmental ones. Main conclusions TA communities of the Sphagnum peatlands of Santa Cruz Island and the mechanisms shaping these communities contrast with Northern Hemisphere and South American peatlands. Soil moisture was not a strong predictor of community composition most likely because rainfall and clouds provide sufficient moisture. Dispersal limitation was more important than environmental filtering because of the isolation of the insular peatlands from continental ones and the young ecological history of these ecosystems.
Resumo:
In geographical epidemiology, maps of disease rates and disease risk provide a spatial perspective for researching disease etiology. For rare diseases or when the population base is small, the rate and risk estimates may be unstable. Empirical Bayesian (EB) methods have been used to spatially smooth the estimates by permitting an area estimate to "borrow strength" from its neighbors. Such EB methods include the use of a Gamma model, of a James-Stein estimator, and of a conditional autoregressive (CAR) process. A fully Bayesian analysis of the CAR process is proposed. One advantage of this fully Bayesian analysis is that it can be implemented simply by using repeated sampling from the posterior densities. Use of a Markov chain Monte Carlo technique such as Gibbs sampler was not necessary. Direct resampling from the posterior densities provides exact small sample inferences instead of the approximate asymptotic analyses of maximum likelihood methods (Clayton & Kaldor, 1987). Further, the proposed CAR model provides for covariates to be included in the model. A simulation demonstrates the effect of sample size on the fully Bayesian analysis of the CAR process. The methods are applied to lip cancer data from Scotland, and the results are compared. ^
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background In order to provide insights into the complex biochemical processes inside a cell, modelling approaches must find a balance between achieving an adequate representation of the physical phenomena and keeping the associated computational cost within reasonable limits. This issue is particularly stressed when spatial inhomogeneities have a significant effect on system's behaviour. In such cases, a spatially-resolved stochastic method can better portray the biological reality, but the corresponding computer simulations can in turn be prohibitively expensive. Results We present a method that incorporates spatial information by means of tailored, probability distributed time-delays. These distributions can be directly obtained by single in silico or a suitable set of in vitro experiments and are subsequently fed into a delay stochastic simulation algorithm (DSSA), achieving a good compromise between computational costs and a much more accurate representation of spatial processes such as molecular diffusion and translocation between cell compartments. Additionally, we present a novel alternative approach based on delay differential equations (DDE) that can be used in scenarios of high molecular concentrations and low noise propagation. Conclusions Our proposed methodologies accurately capture and incorporate certain spatial processes into temporal stochastic and deterministic simulations, increasing their accuracy at low computational costs. This is of particular importance given that time spans of cellular processes are generally larger (possibly by several orders of magnitude) than those achievable by current spatially-resolved stochastic simulators. Hence, our methodology allows users to explore cellular scenarios under the effects of diffusion and stochasticity in time spans that were, until now, simply unfeasible. Our methodologies are supported by theoretical considerations on the different modelling regimes, i.e. spatial vs. delay-temporal, as indicated by the corresponding Master Equations and presented elsewhere.
Resumo:
Dispersal limitation and environmental conditions are crucial drivers of plant species distribution and establishment. As these factors operate at different spatial scales, we asked: Do the environmental factors known to determine community assembly at broad scales operate at fine scales (few meters)? How much do these factors account for community variation at fine scales? In which way do biotic and abiotic interactions drive changes in species composition? We surveyed the plant community within a dry grassland along a very steep gradient of soil characteristics like pH and nutrients. We used a spatially explicit sampling design, based on three replicated macroplots of 15x15, 12x12 and 12x12 meters in extent. Soil samples were taken to quantify several soil properties (carbon, nitrogen, plant available phosphorus, pH, water content and dehydrogenase activity as a proxy for overall microbial activity). We performed variance partitioning to assess the effect of these variables on plant composition and statistically controlled for spatial autocorrelation via eigenvector mapping. We also applied null model analysis to test for non-random patterns in species co-occurrence using randomization schemes that account for patterns expected under species interactions. At a fine spatial scale, environmental factors explained 18% of variation when controlling for spatial autocorrelation in the distribution of plant species, whereas purely spatial processes accounted for 14% variation. Null model analysis showed that species spatially segregated in a non-random way and these spatial patterns could be due to a combination of environmental filtering and biotic interactions. Our grassland study suggests that environmental factors found to be directly relevant in broad scale studies are present also at small scales, but are supplemented by spatial processes and more direct interactions like competition.
Resumo:
Spatial processes could play an important role in density-dependent population regulation because the disproportionate use of poor quality habitats as population size increases is widespread in animal populations-the so-called buffer effect. While the buffer effect patterns and their demographic consequences have been described in a number of wild populations, much less is known about how dispersal affects distribution patterns and ultimately density dependence. Here, we investigated the role of dispersal in spatial density dependence using an extraordinarily detailed dataset from a reintroduced Mauritius kestrel (Falco punctatus) population with a territorial (despotic) breeding system. We show that recruitment rates varied significantly between territories, and that territory occupancy was related to its recruitment rate, both of which are consistent with the buffer effect theory. However, we also show that restricted dispersal affects the patterns of territory occupancy with the territories close to release sites being occupied sooner and for longer as the population has grown than the territories further away. As a result of these dispersal patterns, the strength of spatial density dependence is significantly reduced. We conclude that restricted dispersal can modify spatial density dependence in the wild, which has implications for the way population dynamics are likely to be impacted by environmental change.
Resumo:
Abstract: Movements away from the natal or home territory are important to many ecological processes, including gene flow, population regulation, and disease epidemiology, yet quantitative data on these behaviors are lacking. Red foxes exhibit 2 periods of extraterritorial movements: when an individual disperses and when males search neighboring territories for extrapair copulations during the breeding season. Using radiotracking data collected at 5-min interfix intervals, we compared movement parameters, including distance moved, speed of movement, and turning angles, of dispersal and reproductive movements to those made during normal territorial movements; the instantaneous separation distances of dispersing and extraterritorial movements to the movements of resident adults; and the frequency of locations of 95%, 60%, and 30% harmonic mean isopleths of adult fox home territories to randomly generated fox movements. Foxes making reproductive movements traveled farther than when undertaking other types of movement, and dispersal movements were straighter. Reproductive and dispersal movements were faster than territorial movements and also differed in intensity of search and thoroughness. Foxes making dispersal movements avoided direct contact with territorial adults and moved through peripheral areas of territories. The converse was true for reproductive movements. Although similar in some basic characteristics, dispersal and reproductive movements are fundamentally different both behaviorally and spatially and are likely to have different ultimate purposes and contrasting effects on spatial processes such as disease transmission
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
All trees with diameter at breast height dbh >= 10.0 cm were stem-mapped in a "terra firme" tropical rainforest in the Brazilian Amazon, at the EMBRAPA Experimental Site, Manaus, Brazil. Specifically, the relationships of tree species with soil properties were determined by using canonical correspondence analyses based on nine soil variables and 68 tree species. From the canonical correspondence analyses, the species were grouped into two groups: one where species occur mainly in sandy sites, presenting low organic matter content; and another one where species occur mainly in dry and clayey sites. Hence, we used Ripley's K function to analyze the distribution of species in 32 plots ranging from 2,500 m(2) to 20,000 m(2) to determine whether each group presents some spatial aggregation as a soil variations result. Significant spatial aggregation for the two groups was found only at over 10,000 m(2) sampling units, particularly for those species found in clayey soils and drier environments, where the sampling units investigated seemed to meet the species requirements. Soil variables, mediated by topographic positions had influenced species spatial aggregation, mainly in an intermediate to large distances varied range (>= 20 m). Based on our findings, we conclude that environmental heterogeneity and 10,000 m(2) minimum sample unit sizes should be considered in forest dynamic studies in order to understand the spatial processes structuring the "terra firme" tropical rainforest in Brazilian Amazon.
Resumo:
Amongst the various hypotheses that challenged to explain the coexistence of species with similar life histories, theoretical, and empirical studies suggest that spatial processes may slow down competitive exclusion and hence promote coexistence even in the absence of evident trade-offs and frequent disturbances. We investigated the effects of spatial pattern and density on the relative importance of intra- and interspecific competition in a field experiment. We hypothesized that weak competitors increased biomass and seed production within neighborhoods of conspecifics, while stronger competitors would show increased biomass and seed production within neighborhoods of heterospecifics. Seeds of four annual plant species (Capsella bursa-pastoris, Stachys annua, Stellaria media, Poa annua) were sown in two spatial patterns (aggregated vs. random) and at two densities (low vs. high) in three different species combinations (monocultures, three and four species mixtures). There was a hierarchy in biomass production among the four species and C. bursa-pastoris and S. media were among the weak competitors. Capsella and Stellaria showed increased biomass production and had more individuals in the aggregated compared to the random pattern, especially when both superior competitors (S. annua, P. annua) were present. For P. annua we observed considerable differences among species combinations and unexpected pattern effects. Our findings support the hypothesis that weak competitors increase their fitness when grown in the neighborhood of conspecifics, and suggested that for the weakest competitors the species identity is not important and all other species are best avoided through intraspecific aggregation. In addition, our data suggest that the importance of spatial pattern for the other competitors might not only depend on the position within the hierarchy but also on the identity of neighbor species, species characteristics, below ground interactions, and other nonspatial factors.
Resumo:
The paper presents a computational system based upon formal principles to run spatial models for environmental processes. The simulator is named SimuMap because it is typically used to simulate spatial processes over a mapped representation of terrain. A model is formally represented in SimuMap as a set of coupled sub-models. The paper considers the situation where spatial processes operate at different time levels, but are still integrated. An example of such a situation commonly occurs in watershed hydrology where overland flow and stream channel flow have very different flow rates but are highly related as they are subject to the same terrain runoff processes. SimuMap is able to run a network of sub-models that express different time-space derivatives for water flow processes. Sub-models may be coded generically with a map algebra programming language that uses a surface data model. To address the problem of differing time levels in simulation, the paper: (i) reviews general approaches for numerical solvers, (ii) considers the constraints that need to be enforced to use more adaptive time steps in discrete time specified simulations, and (iii) scaling transfer rates in equations that use different time bases for time-space derivatives. A multistep scheme is proposed for SimuMap. This is presented along with a description of its visual programming interface, its modelling formalisms and future plans. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper draws upon Hubbard's (1999, p. 57) term ‘scary heterosexualities,’ that is non-normative heterosexuality, in the context of the rural drawing on data from fieldwork in the remote Western Australian mining town of Kalgoorlie. Our focus is ‘the skimpie’ – a female barmaid who serves in her underwear and who, in both historical and contemporary times, is strongly associated with rural mining communities. Interviews with skimpies and local residents as well as participant observation reveal how potential fears and anxieties about skimpies are managed. We identify the discursive and spatial processes by which skimpie work is contained in Kalgoorlie so that the potential scariness ‘the skimpie’ represents to the rural is muted and buttressed in terms of a more conventional and less threatening rural heterosexuality.