990 resultados para spatial epidemiology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we aim to propose a new approach for preliminary epidemiological studies on Standardized Mortality Ratios (SMR) collected in many spatial regions. A preliminary study on SMRs aims to formulate hypotheses to be investigated via individual epidemiological studies that avoid bias carried on by aggregated analyses. Starting from collecting disease counts and calculating expected disease counts by means of reference population disease rates, in each area an SMR is derived as the MLE under the Poisson assumption on each observation. Such estimators have high standard errors in small areas, i.e. where the expected count is low either because of the low population underlying the area or the rarity of the disease under study. Disease mapping models and other techniques for screening disease rates among the map aiming to detect anomalies and possible high-risk areas have been proposed in literature according to the classic and the Bayesian paradigm. Our proposal is approaching this issue by a decision-oriented method, which focus on multiple testing control, without however leaving the preliminary study perspective that an analysis on SMR indicators is asked to. We implement the control of the FDR, a quantity largely used to address multiple comparisons problems in the eld of microarray data analysis but which is not usually employed in disease mapping. Controlling the FDR means providing an estimate of the FDR for a set of rejected null hypotheses. The small areas issue arises diculties in applying traditional methods for FDR estimation, that are usually based only on the p-values knowledge (Benjamini and Hochberg, 1995; Storey, 2003). Tests evaluated by a traditional p-value provide weak power in small areas, where the expected number of disease cases is small. Moreover tests cannot be assumed as independent when spatial correlation between SMRs is expected, neither they are identical distributed when population underlying the map is heterogeneous. The Bayesian paradigm oers a way to overcome the inappropriateness of p-values based methods. Another peculiarity of the present work is to propose a hierarchical full Bayesian model for FDR estimation in testing many null hypothesis of absence of risk.We will use concepts of Bayesian models for disease mapping, referring in particular to the Besag York and Mollié model (1991) often used in practice for its exible prior assumption on the risks distribution across regions. The borrowing of strength between prior and likelihood typical of a hierarchical Bayesian model takes the advantage of evaluating a singular test (i.e. a test in a singular area) by means of all observations in the map under study, rather than just by means of the singular observation. This allows to improve the power test in small areas and addressing more appropriately the spatial correlation issue that suggests that relative risks are closer in spatially contiguous regions. The proposed model aims to estimate the FDR by means of the MCMC estimated posterior probabilities b i's of the null hypothesis (absence of risk) for each area. An estimate of the expected FDR conditional on data (\FDR) can be calculated in any set of b i's relative to areas declared at high-risk (where thenull hypothesis is rejected) by averaging the b i's themselves. The\FDR can be used to provide an easy decision rule for selecting high-risk areas, i.e. selecting as many as possible areas such that the\FDR is non-lower than a prexed value; we call them\FDR based decision (or selection) rules. The sensitivity and specicity of such rule depend on the accuracy of the FDR estimate, the over-estimation of FDR causing a loss of power and the under-estimation of FDR producing a loss of specicity. Moreover, our model has the interesting feature of still being able to provide an estimate of relative risk values as in the Besag York and Mollié model (1991). A simulation study to evaluate the model performance in FDR estimation accuracy, sensitivity and specificity of the decision rule, and goodness of estimation of relative risks, was set up. We chose a real map from which we generated several spatial scenarios whose counts of disease vary according to the spatial correlation degree, the size areas, the number of areas where the null hypothesis is true and the risk level in the latter areas. In summarizing simulation results we will always consider the FDR estimation in sets constituted by all b i's selected lower than a threshold t. We will show graphs of the\FDR and the true FDR (known by simulation) plotted against a threshold t to assess the FDR estimation. Varying the threshold we can learn which FDR values can be accurately estimated by the practitioner willing to apply the model (by the closeness between\FDR and true FDR). By plotting the calculated sensitivity and specicity (both known by simulation) vs the\FDR we can check the sensitivity and specicity of the corresponding\FDR based decision rules. For investigating the over-smoothing level of relative risk estimates we will compare box-plots of such estimates in high-risk areas (known by simulation), obtained by both our model and the classic Besag York Mollié model. All the summary tools are worked out for all simulated scenarios (in total 54 scenarios). Results show that FDR is well estimated (in the worst case we get an overestimation, hence a conservative FDR control) in small areas, low risk levels and spatially correlated risks scenarios, that are our primary aims. In such scenarios we have good estimates of the FDR for all values less or equal than 0.10. The sensitivity of\FDR based decision rules is generally low but specicity is high. In such scenario the use of\FDR = 0:05 or\FDR = 0:10 based selection rule can be suggested. In cases where the number of true alternative hypotheses (number of true high-risk areas) is small, also FDR = 0:15 values are well estimated, and \FDR = 0:15 based decision rules gains power maintaining an high specicity. On the other hand, in non-small areas and non-small risk level scenarios the FDR is under-estimated unless for very small values of it (much lower than 0.05); this resulting in a loss of specicity of a\FDR = 0:05 based decision rule. In such scenario\FDR = 0:05 or, even worse,\FDR = 0:1 based decision rules cannot be suggested because the true FDR is actually much higher. As regards the relative risk estimation, our model achieves almost the same results of the classic Besag York Molliè model. For this reason, our model is interesting for its ability to perform both the estimation of relative risk values and the FDR control, except for non-small areas and large risk level scenarios. A case of study is nally presented to show how the method can be used in epidemiology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ecological studies are based on characteristics of groups of individuals, which are common in various disciplines including epidemiology. It is of great interest for epidemiologists to study the geographical variation of a disease by accounting for the positive spatial dependence between neighbouring areas. However, the choice of scale of the spatial correlation requires much attention. In view of a lack of studies in this area, this study aims to investigate the impact of differing definitions of geographical scales using a multilevel model. We propose a new approach -- the grid-based partitions and compare it with the popular census region approach. Unexplained geographical variation is accounted for via area-specific unstructured random effects and spatially structured random effects specified as an intrinsic conditional autoregressive process. Using grid-based modelling of random effects in contrast to the census region approach, we illustrate conditions where improvements are observed in the estimation of the linear predictor, random effects, parameters, and the identification of the distribution of residual risk and the aggregate risk in a study region. The study has found that grid-based modelling is a valuable approach for spatially sparse data while the SLA-based and grid-based approaches perform equally well for spatially dense data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human infection with a novel low pathogenicity influenza A(H7N9) virus in eastern China has recently raised global public health concerns (1). The geographic sources of infection have yet to be fully clarified, and confirmed human cases from 1 province have not been linked to those from other provinces. While some studies have identified epidemiologic characteristics of subtype H7N9 cases and clinical differences between these cases and cases of highly pathogenic influenza A(H5N1), another avian influenza affecting parts of China (2–4), the spatial epidemiology of human infection with influenza subtypes H7N9 and H5N1 in China has yet to be elucidated. To test the hypothesis of co-distribution of high-risk clusters of both types of infection, we used all available data on human cases in mainland China and investigated the geospatial epidemiologic features...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis has contributed to the advancement of knowledge in disease modelling by addressing interesting and crucial issues relevant to modelling health data over space and time. The research has led to the increased understanding of spatial scales, temporal scales, and spatial smoothing for modelling diseases, in terms of their methodology and applications. This research is of particular significance to researchers seeking to employ statistical modelling techniques over space and time in various disciplines. A broad class of statistical models are employed to assess what impact of spatial and temporal scales have on simulated and real data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

description and analysis of geographically indexed health data with respect to demographic, environmental, behavioural, socioeconomic, genetic, and infectious risk factors (Elliott andWartenberg 2004). Disease maps can be useful for estimating relative risk; ecological analyses, incorporating area and/or individual-level covariates; or cluster analyses (Lawson 2009). As aggregated data are often more readily available, one common method of mapping disease is to aggregate the counts of disease at some geographical areal level, and present them as choropleth maps (Devesa et al. 1999; Population Health Division 2006). Therefore, this chapter will focus exclusively on methods appropriate for areal data...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La campylobactériose représente la principale cause de gastro-entérite bactérienne dans les pays industrialisés. L’épidémiologie de la maladie est complexe, impliquant plusieurs sources et voies de transmission. L’objectif principal de ce projet était d’étudier les facteurs environnementaux impliqués dans le risque de campylobactériose et les aspects méthodologiques pertinents à cette problématique à partir des cas humains déclarés au Québec (Canada) entre 1996 et 2006. Un schéma conceptuel des sources et voies de transmission de Campylobacter a d’abord été proposé suivant une synthèse des connaissances épidémiologiques tirées d’une revue de littérature extensive. Le risque d’une récurrence de campylobactériose a ensuite été décrit selon les caractéristiques des patients à partir de tables de survie et de modèles de régression logistique. Comparativement au risque de campylobactériose dans la population générale, le risque d’un épisode récurrent était plus élevé pour les quatre années suivant un épisode. Ce risque était similaire entre les genres, mais plus élevé pour les personnes de régions rurales et plus faible pour les enfants de moins de quatre ans. Ces résultats suggèrent une absence d’immunité durable ou de résilience clinique suivant un épisode déclaré et/ou une ré-exposition périodique. L’objectif suivant portait sur le choix de l’unité géographique dans les études écologiques. Neuf critères mesurables ont été proposés, couvrant la pertinence biologique, la communicabilité, l’accès aux données, la distribution des variables d’exposition, des cas et de la population, ainsi que la forme de l’unité. Ces critères ont été appliqués à des unités géographiques dérivées de cadre administratif, sanitaire ou naturel. La municipalité affichait la meilleure performance, étant donné les objectifs spécifiques considérés. Les associations entre l’incidence de campylobactériose et diverses variables (densité de volailles, densité de ruminants, abattoirs, température, précipitations, densité de population, pourcentage de diplomation) ont ensuite été comparées pour sept unités géographiques différentes en utilisant des modèles conditionnels autorégressifs. Le nombre de variables statistiquement significatives variait selon le degré d’agrégation, mais la direction des associations était constante. Les unités plus agrégées tendaient à démontrer des forces d’association plus élevées, mais plus variables, à l’exception de l’abattoir. Cette étude a souligné l’importance du choix de l’unité géographique d’analyse lors d’une utilisation d’un devis d’étude écologique. Finalement, les associations entre l’incidence de campylobactériose et des caractéristiques environnementales ont été décrites selon quatre groupes d’âge et deux périodes saisonnières d’après une étude écologique. Un modèle de Poisson multi-niveau a été utilisé pour la modélisation, avec la municipalité comme unité. Une densité de ruminant élevée était positivement associée avec l’incidence de campylobactériose, avec une force d’association diminuant selon l’âge. Une densité de volailles élevée et la présence d’un abattoir de volailles à fort volume d’abattage étaient également associées à une incidence plus élevée, mais seulement pour les personnes de 16 à 34 ans. Des associations ont également été détectées avec la densité de population et les précipitations. À l’exception de la densité de population, les associations étaient constantes entre les périodes saisonnières. Un contact étroit avec les animaux de ferme explique le plus vraisemblablement les associations trouvées. La spécificité d’âge et de saison devrait être considérée dans les études futures sur la campylobactériose et dans l’élaboration de mesures préventives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los objetivos de la tesis son: 1.- Estudiar la relación entre la incidencia y mortalidad por cáncer y los factores medioambientales, en particular la contaminación atmosférica, controlando por factores socioeconómicos. 2.- Utilizar aquellos métodos de estadística espacial apropiados para cada tipo de diseño. 3.- Distinguir en los modelos las diferentes fuentes de extra-variabilidad espacial. 4.- Controlar el problema de exceso de ceros inherente a alguna de las neoplasias de interés medioambientales. Conclusiones: - Tanto la incidencia como la mortalidad de las neoplasias, presentaron dos fuentes de extravariación. La extravariaicón espacial, por la que unidades vecinas tienden a presentar razones de incidencia/mortalidad similares, y la heterogeneidad no espacial. En general la extravariabilidad espacial ha resultado ser mucho mayor que la no espacial. - Para suavizar las RIE/RME correspondientes a variables con un porcentaje de ceros superior al40-50% debe utilizarse un modelo que capture este comportamiento. - El mejor modelo en términos de ajuste para recoger el exceso de ceros en las variables de interés ha resultado ser el modelo mixto de riesgo relativo. - Las RIE/RME suavizadas presentan un patrón geográfico claro sólo en algunas neoplasias de interés medioambiental. - Parte de la variabilidad remanente en las RIE/RME suavizadas pudo ser explicada mediante la introducción de variables explicativas, en particular la contaminación atmosférica y variables socioeconómicas. -Como los contaminantes atmosféricos fueron observados en un diseño geoestadístico y las neoplasias de interés mediambiental lo fueron en un diseño en rejilla se modelizó la superficie de exposición. - El efecto del contaminante en cada municipio/sección censal se aproximó introduciendo en el modelo el valor promedio en cada área y la variabilidad intra-área. - El efecto del contaminante se consideró aleatorio, en el sentido de que podría ser diferente en cada una de las áreas. - Las condiciones socioeconómicas fueron otra de las variables que redujeron la variabilidad remanente en las RIE/RME suavizadas. -Las variables explicativas observadas con un diseño en rejilla, como el índice de privación, se introdujeron en el modelo como efectos fijos. - El efecto de la privación sobre la incidencia y/o mortalidad por cáncer de tráquea, bronquios y pulmón, controlando por contaminantes atmosféricos, fue mayor en las mujeres que en los hombres. -Altas concentraciones de contaminantes atmosféricos aumentan el riesgo de padecer neoplasias de interés medioambiental, controlando por condiciones socioeconómicas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mais de 80.000 casos de hanseníase foram diagnosticados nos últimos 20 anos no Pará e, ainda hoje, com um coeficiente de detecção anual de 50/100.000 habitantes (três vezes superior à média nacional) a doença permanece como um grave problema de saúde pública neste Estado. O objetivo geral deste estudo foi desenvolver um método integrando a epidemiologia espacial e sorológica como ferramenta de combate à hanseníase no Pará. Inicialmente, foram realizadas visitas domiciliares a famílias de pessoas afetadas pela hanseníase, diagnosticadas nos últimos cinco a seis anos, em oito municípios de diferentes regiões do Estado. A equipe de pesquisadores com experiência no manejo da hanseníase, composta por médicos dermatologistas, enfermeiros, fisioterapeutas e técnicos de laboratório, realizou exame clínico dermatoneurológico em 1.945 contatos intradomiciliares de 531 casos notificados e coletou amostra de sangue para pesquisa sorológica de anticorpos IgM anti-PGL-I. Além disso, 1.592 estudantes de 37 escolas públicas do ensino fundamental e médio, com idade entre 6 e 20 anos, também foram selecionados aleatoriamente para serem submetidos à mesma avaliação. As residências dos casos notificados, bem como a dos estudantes incluídos no estudo foram georreferenciadas para a análise da distribuição espacial da hanseníase. Dois anos mais tarde, com base na informação sorológica prévia, a equipe de pesquisadores retornou a dois municípios para reavaliar os indivíduos incluídos no estudo. Adicionalmente, duas novas escolas públicas localizadas em áreas de alto risco de hanseníase, determinadas pela análise da distribuição espacial da doença em um dos municípios, foram selecionadas para avaliar-se a importância da informação geográfica na detecção de casos novos. Na avaliação inicial, 156 (8%) contatos e 63 (4%) estudantes foram diagnosticados como casos novos de hanseníase; 806 (41,4%) contatos e 777 (48,8%) estudantes foram soropositivos para anti-PGL-I. A análise da distribuição espacial dos casos registrados da doença em um dos municípios selecionados indicou que a hanseníase apresenta um padrão heterogêneo, com clusters de alta e baixa taxa de detecção anual em áreas específicas da cidade (p < 0,01), e que 94,7% dos estudantes examinados residiam a menos de 200 metros de um caso registrado durante os seis anos anteriores ao estudo. No seguimento, a incidência de hanseníase foi significativamente maior entre os indivíduos soropositivos (22,3%) quando comparados aos soronegativos (9.4%) (OR = 2,7; IC95% = 1,29 – 5,87; p = 0,01); também foi significativamente mais alta entre moradores de residências com pelo menos um sujeito soropositivo (17,4%), comparada aos de residências sem nenhum morador soropositivo (7,4%) (OR = 2,6; IC95% = 1,18 – 5,91; p = 0,02). A seleção de escolas localizadas em áreas de maior risco dentro do município aumentou significativamente a eficiência na detecção de casos novos entre escolares (8,2%), quando comparada aos resultados obtidos em escolas selecionadas aleatoriamente (4%) (p = 0,04). Os dados mostram alta taxa de prevalência oculta de hanseníase e de infecção subclínica pelo M. leprae no Pará. A epidemiologia espacial e sorológica são ferramentas eficazes para aumentar a detecção precoce de casos novos e deveriam ser utilizadas pelos municípios do Pará para que o Estado possa finalmente alcançar as metas de controle da hanseníase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L.yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source-sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducción: El Cáncer es prevenible en algunos casos, si se evita la exposición a sustancias cancerígenas en el medio ambiente. En Colombia, Cundinamarca es uno de los departamentos con mayores incrementos en la tasa de mortalidad y en el municipio de Sibaté, habitantes han manifestado preocupación por el incremento de la enfermedad. En el campo de la salud ambiental mundial, la georreferenciación aplicada al estudio de fenómenos en salud, ha tenido éxito con resultados válidos. El estudio propuso usar herramientas de información geográfica, para generar análisis de tiempo y espacio que hicieran visible el comportamiento del cáncer en Sibaté y sustentaran hipótesis de influencias ambientales sobre concentraciones de casos. Objetivo: Obtener incidencia y prevalencia de casos de cáncer en habitantes de Sibaté y georreferenciar los casos en un periodo de 5 años, con base en indagación de registros. Metodología: Estudio exploratorio descriptivo de corte transversal,sobre todos los diagnósticos de cáncer entre los años 2010 a 2014, encontrados en los archivos de la Secretaria de Salud municipal. Se incluyeron unicamente quienes tuvieron residencia permanente en el municipio y fueron diagnosticados con cáncer entre los años de 2010 a 2104. Sobre cada caso se obtuvo género, edad, estrato socioeconómico, nivel académico, ocupación y estado civil. Para el análisis de tiempo se usó la fecha de diagnóstico y para el análisis de espacio, la dirección de residencia, tipo de cáncer y coordenada geográfica. Se generaron coordenadas geográficas con un equipo GPS Garmin y se crearon mapas con los puntos de la ubicación de las viviendas de los pacientes. Se proceso la información, con Epi Info 7 Resultados: Se encontraron 107 casos de cáncer registrados en la Secretaria de Salud de Sibaté, 66 mujeres, 41 hombres. Sin división de género, el 30.93% de la población presento cáncer del sistema reproductor, el 18,56% digestivo y el 17,53% tegumentario. Se presentaron 2 grandes casos de agrupaciones espaciales en el territorio estudiado, una en el Barrio Pablo Neruda con 12 (21,05%) casos y en el casco Urbano de Sibaté con 38 (66,67%) casos. Conclusión: Se corroboro que el análisis geográfico con variables espacio temporales y de exposición, puede ser la herramienta para generar hipótesis sobre asociaciones de casos de cáncer con factores ambientales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The identification of disease clusters in space or space-time is of vital importance for public health policy and action. In the case of methicillin-resistant Staphylococcus aureus (MRSA), it is particularly important to distinguish between community and health care-associated infections, and to identify reservoirs of infection. 832 cases of MRSA in the West Midlands (UK) were tested for clustering and evidence of community transmission, after being geo-located to the centroids of UK unit postcodes (postal areas roughly equivalent to Zip+4 zip code areas). An age-stratified analysis was also carried out at the coarser spatial resolution of UK Census Output Areas. Stochastic simulation and kernel density estimation were combined to identify significant local clusters of MRSA (p<0.025), which were supported by SaTScan spatial and spatio-temporal scan. In order to investigate local sampling effort, a spatial 'random labelling' approach was used, with MRSA as cases and MSSA (methicillin-sensitive S. aureus) as controls. Heavy sampling in general was a response to MRSA outbreaks, which in turn appeared to be associated with medical care environments. The significance of clusters identified by kernel estimation was independently supported by information on the locations and client groups of nursing homes, and by preliminary molecular typing of isolates. In the absence of occupational/ lifestyle data on patients, the assumption was made that an individual's location and consequent risk is adequately represented by their residential postcode. The problems of this assumption are discussed, with recommendations for future data collection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used geographic information systems and a spatial analysis approach to explore the pattern of Ross River virus (RRV) incidence in Brisbane, Australia. Climate, vegetation and socioeconomic data in 2001 were obtained from the Australian Bureau of Meteorology, the Brisbane City Council and the Australian Bureau of Statistics, respectively. Information on the RRV cases was obtained from the Queensland Department of Health. Spatial and multiple negative binomial regression models were used to identify the socioeconomic and environmental determinants of RRV transmission. The results show that RRV activity was primarily concentrated in the northeastern, northwestern, and southeastern regions in Brisbane. Multiple negative binomial regression models showed that the spatial pattern of RRV disease in Brisbane seemed to be determined by a combination of local ecologic, socioeconomic, and environmental factors.