940 resultados para spatial and temporal variations
Resumo:
In the present study an attempt has been made to understand the microzooplankton community along the easr coast of India. Most of the earlier studies projected Bay of Bengal as an oligotrophic system where phytoplankton growth is limited by a number of factors among which nutrients are the foremost. Hence it is logical to consider that the most of the primary production in the Bay of Bengal could be contributed by small sized phytoplankton harnessing the available resources, which in turn can be utilized effiency by the microzooplankton only. Hence microzooplankton could play in transferring primary organic carbon to higher tropic levels in this region.
Resumo:
The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.
Resumo:
Extensive spatial and temporal surveys, over 15 years, have been conducted in soil in urban parks and street dusts in one of the most polluted cities in western Europe, Avilés (NW Spain). The first survey was carried out in 1996, and since then monitoring has been undertaken every five years. Whilst the sampling site is a relatively small town, industrial activities (mainly the steel industry and Zn and Al metallurgy) and other less significant urban sources, such as traffic, strongly affect the load of heavy metals in the urban aerosol. Elemental tracers have been used to characterise the influence of these sources on the composition of soil and dust. Although PM10 has decreased over these years as a result of environmental measures undertaken in the city, some of the “industrial” elements still remain in concentrations of concern for example, up to 4.6% and 0.5% of Zn in dust and soil, respectively. Spatial trends in metals such as Zn and Cd clearly reflect sources from the processing industries. The concentrations of these elements across Europe have reduced over time, however the most recent results from Avilés revealed an upward trend in concentration for Zn, Cd, Hg and As. A risk assessment of the soil highlighted As as an element of concern since its cancer risk in adults was more than double the value above which regulatory agencies deem it to be unacceptable. If children were considered to be the receptors, then the risk nearly doubles from this element.
Resumo:
"June 1974."
Resumo:
Aim: The European Commission Cooperation in Science and Technology (COST) Action FA1203 “SMARTER” aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant . Location: The full range of Ambrosia artemisiifolia L. distribution over Europe (39oN-60oN; 2oW-45oE). Methods: Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August-September) recorded during a 10-year period (2004-2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and Standard Deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p < 0.05. Results: There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen was recorded in the air). Main conclusions: The direction of any trends varied locally and reflect changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.
Resumo:
Soil properties are closely related with crop production and spite of the measures implemented, spatial variation has been repeatedly observed and described. Identifying and describing spatial variations of soil properties and their effects on crop yield can be a powerful decision-making tool in specific land management systems. The objective of this research was to characterize the spatial and temporal variations in crop yield and chemical and physical properties of a Rhodic Hapludox soil under no-tillage. The studied area of 3.42 ha had been cultivated since 1985 under no-tillage crop rotation in summer and winter. Yield and soil property were sampled in a regular 10 x 10 m grid, with 302 sample points. Yields of several crops were analyzed (soybean, maize, triticale, hyacinth bean and castor bean) as well as soil chemical (pH, Soil Organic Matter (SOM), P, Ca2+, Mg2+, H + Al, B, Fe, Mn, Zn, CEC, sum of bases (SB), and base saturation (V %)) and soil physical properties (saturated hydraulic conductivity, texture, density, total porosity, and mechanical penetration resistance). Data were analyzed using geostatistical analysis procedures and maps based on interpolation by kriging. Great variation in crop yields was observed in the years evaluated. The yield values in the Northern region of the study area were high in some years. Crop yields and some physical and soil chemical properties were spatially correlated.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A distribuição espacial e temporal da densidade e biomassa dos copépodos planctônicos Pseudodiaptomus richardi e P. acutus, ao longo de um gradiente de salinidade, foi estudada no Estuário do Rio Caeté (Norte do Brasil) durante os meses de junho e dezembro de 1998 (estação seca) e fevereiro e maio de 1999 (estação chuvosa). A biomassa dos copépodos foi estimada a partir de parâmetros da regressão baseada na relação entre o peso seco e o comprimento do corpo (prossoma) de organismos adultos. O Estuário do Rio Caeté caracterizou-se por uma grande variação espacial e sazonal na salinidade (0,8-37,2). A relação peso-comprimento para ambas as espécies de Pseudodiaptomus foi do tipo exponencial. Os valores de densidade e biomassa oscilaram entre 0,28-46,18 ind. m-3 e 0,0022-0,3507 mg DW. m-3 para P. richardi; e entre 0,01-17,02 ind. m-3 e 0,0005-0,7181 mg DW. m-3 para P. acutus. Os resultados revelaram que a contribuição de P. richardi para a produção secundária no Estuário do Rio Caeté é mais importante na zona liminética que em outras zonas onde foram dominantes os regimes eurihalino-polihalino. Contudo, para P. acutus não foi possível observar de forma clara um padrão de distribuição espacial e temporal para a área estudada.
Resumo:
Dissolved organic matter (DOM) is an essential component of the carbon cycle and a critical driver in controlling variety of biogeochemical and ecological processes in wetlands. The quality of this DOM as it relates to composition and reactivity is directly related to its sources and may vary on temporal and spatial scales. However, large scale, long-term studies of DOM dynamics in wetlands are still scarce in the literature. Here we present a multi-year DOM characterization study for monthly surface water samples collected at 14 sampling stations along two transects within the greater Everglades, a subtropical, oligotrophic, coastal freshwater wetland-mangrove-estuarine ecosystem. In an attempt to assess quantitative and qualitative variations of DOM on both spatial and temporal scales, we determined dissolved organic carbon (DOC) values and DOM optical properties, respectively. DOM quality was assessed using, excitation emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC). Variations of the PARAFAC components abundance and composition were clearly observed on spatial and seasonal scales. Dry versus wet season DOC concentrations were affected by dry-down and re-wetting processes in the freshwater marshes, while DOM compositional features were controlled by soil and higher plant versus periphyton sources respectively. Peat-soil based freshwater marsh sites could be clearly differentiated from marl-soil based sites based on EEM–PARAFAC data. Freshwater marsh DOM was enriched in higher plant and soil-derived humic-like compounds, compared to estuarine sites which were more controlled by algae- and microbial-derived inputs. DOM from fringe mangrove sites could be differentiated between tidally influenced sites and sites exposed to long inundation periods. As such coastal estuarine sites were significantly controlled by hydrology, while DOM dynamics in Florida Bay were seasonally driven by both primary productivity and hydrology. This study exemplifies the application of long term optical properties monitoring as an effective technique to investigate DOM dynamics in aquatic ecosystems. The work presented here also serves as a pre-restoration condition dataset for DOM in the context of the Comprehensive Everglades Restoration Plan (CERP).
Resumo:
The aim of this study was to analyze the distribution and abundance of the fish fauna of Palmas bay on Anchieta Island in southeastern Brazil. Specimens were caught in the summer and winter of 1992, using an otter trawl at three locations in the bay. The specimens were caught in both the nighttime and daytime. Data on the water temperature and salinity were recorded for the characterization of the predominant water mass in the region, and sediment samples were taken for granulometric analysis. A total of 7 656 specimens (79 species), with a total weight of approximately 300 kg, were recorded. The most abundant species were Eucinostomus argenteus, Ctenosciaena gracilicirrhus, Haemulon steindachneri, Eucinostomus gula and Diapterus rhombeus, which together accounted for more than 73% of the sample. In general, the ecological indices showed no differences in the composition of species for the abiotic variables analyzed. The multivariate analysis showed that the variations in the distribution of the fish fauna were mainly associated with intra-annual differences in temperature and salinity, resulting from the presence of South Atlantic Central Water (SACW) in the area during the summer. The analysis also showed an association with the type of bottom and a lesser association with respect to the night/day periods.
Resumo:
Recursos pesqueiros são importantes fontes de renda e alimento para as populações rurais e urbanas na Amazônia. O presente trabalho avalia a pesca e as variáveis ambientais que determinam a produção de pescarias que desembarcam em Manaus, e avalia também a abundância relativa de recursos pesqueiros em diferentes subsistemas na Amazônia Central. A informação coletada no porto de desembarque de pescado de Manaus foi utilizada para testar um novo índice de captura obtido a partir de um modelo de covariância que apresentou as seguintes variáveis significativas: número de pescadores/dia (dias de pesca vezes número de pescadores por viagem); distância do pesqueiro até Manaus; quantidade de gelo que usou durante a viagem; e nível de rio. Não houve nenhuma diferença significativa entre valores médios de captura entre os subsistemas do Purus, Madeira e de Juruá. Estes resultados sugerem que os tributários da margem direita são similares e mais produtivos em termos comerciais. Concluiu-se que a produção corrente varia de acordo com a magnitude de esforço pesqueiro, por variações ambientais, assim como por aspectos operacionais da pesca, particularmente o consumo de gelo.
Resumo:
Este estudo é parte do monitoramento limnológico empreendido pela Companhia Energética do Estado de São Paulo (CESP) durante o processo de enchimento do reservatório de Porto Primavera (Usina Hidrelétrica Engenheiro Sérgio Motta). Este reservatório, localizado no alto rio Paraná, entre os Estados de São Paulo e Mato Grosso, é o quarto maior do país. A primeira etapa de enchimento do lago começou em dezembro de 1998 e a segunda em março de 2001. Amostras para a análise da comunidade bentônica e das características sedimentológicas foram coletadas trimestralmente entre agosto de 1999 e novembro de 2001 e também em agosto de 2002 (11 campanhas). As coletas foram feitas em 13 estações de amostragem distribuídas no reservatório e em uma localizada a jusante da barragem. 128 táxons de invertebrados foram encontrados, sendo Mollusca, Annelida, Insecta e Nematoda os grupos dominantes durante praticamente todos os meses analisados. A classe Insecta foi a melhor representada, com 9 diferentes ordens, dentro das quais os Diptera contribuíram com a ocorrência de 63 táxons. A espécie exótica de bivalve Corbicula fluminea foi registrada em todas as estações de amostragem mostrando sua grande capacidade para colonizar novos habitats em regiões neotropicais. Variações consideráveis na densidade da fauna foram observadas para os diferentes períodos e locais analisados. A densidade máxima (média de 7812 ind.m-2) foi registrada no centro do reservatório enquanto que as densidades mínimas foram registradas na zona lacustre próxima à barragem (média de 9 ind.m-2). A maior riqueza de espécies por local/período (24 táxons) foi encontrada no trecho superior do reservatório (trecho fluvial). A diversidade máxima foi observada nas zonas superior e central do reservatório, com valores de 3.82 e 3.86 (bits.ind-1) no início (agosto/1999) e final (agosto/2002) do processo de enchimento, respectivamente. Não foi encontrado um padrão de distribuição dos grupos faunísticos que pudesse estar associado com a textura granulométrica dos diferentes locais amostrados. Por outro lado, constatou-se a diminuição, ou mesmo a não ocorrência de organismos, nas estações com elevada concentração de matéria orgânica (>40%) em baixo estado de degradação (grandes detritos vegetais). Tal fato pode estar relacionado com a falta de depósitos de sedimentos, dificultando a fixação de organismos da fauna bentônica, bem como com condições químicas mais redutoras em função da intensidade dos processos de decomposição da fitomassa inundada.
Resumo:
Few studies have examined the effects of temperature on spatial and temporal trends in soil CO2-C emissions in Antarctica. In this work, we present in situ measurements of CO2-C emissions and assess their relation with soil temperature, using dynamic chambers. We found an exponential relation between CO2 emissions and soil temperature, with the value of Q10 being close to 2.1. Mean emission rates were as low as 0.026 and 0.072 g of CO2-C m-2 h-1 for bare soil and soil covered with moss, respectively, and as high as 0.162 g of CO2-C m-2 h-1 for soil covered with grass, Deschampsia antarctica Desv. (Poaceae). A spatial variability analysis conducted using a 60-point grid, for an area with mosses (Sannionia uncianata) and D. antarctica, yielded a spherical semivariogram model for CO2-C emissions with a range of 1 m. The results suggest that soil temperature is a controlling factor on temporal variations in soil CO2-C emissions, although spatial variations appear to be more strongly related to the distribution of vegetation types. © 2010 Elsevier B.V. and NIPR.