437 resultados para spastic paralysis
Resumo:
Ascaris suum possesses a large number of FMRFamide-related peptides (FaRPs) of which KNEFIRFamide (AF1), KHEYLRFamide (AF2) and KSAYMRFamide (AF8/PF3) have been shown to modulate the intrinsic, rhythmic activity of the vagina vera of A. suum in vitro. In the present study, the effects of the nematode FaRPs, SDPNFLRFamide (PF1), SADPNFLREamide (PF2) and KPNFIRFamide (PF4) (from Panagrellus redivivus) and AVPGVLRFamide (AF3) and GDVPGVLRFamide (AF4) (from A. suum) on the in vitro activity of the vagina vera were examined. The effects of each of the peptides were qualitatively and quantitatively distinct. All 3 FaRPs from P. redivivus were inhibitory, causing a cessation of contractions. PF2 was 3 times more potent than PF1, with a threshold of 1 nM. Although PF4 was the least potent (threshold, 10 nM), its effects at greater than or equal to 10 nM were quantitatively the greatest. Both AF3 and AF4 (1 mu M) induced complex, multiphasic responses consisting of an initial contraction and spastic paralysis followed by a return of contractile activity of increased amplitude. AF3 was 3 times more potent than AF4. The effects of these peptides had some similarities to those observed on A. suum somatic body wall muscle in vitro, with PF1, PF2 and PF4 being inhibitory and AF3 and AF4 being excitatory.
Resumo:
In this work we isolated a novel crotamine like protein from the Crotalus durissus cascavella venom by combination of molecular exclusion and analytical reverse phase HPLC. Its primary structure was:YKRCHKKGGHCFPKEKICLPPSSDLGKMDCRWKRK-CCKKGS GK. This protein showed a molecular mass of 4892.89 da that was determined by Matrix Assisted Laser Desorption Ionization Time-of-flight (MALDI-TOF) mass spectrometry. The approximately pI value of this protein was determined in 9.9 by two-dimensional electrophoresis. This crotamine-like protein isolated here and that named as Cro 2 produced skeletal muscle spasm and spastic paralysis in mice similarly to other crotamines like proteins. Cro 2 did not modify the insulin secretion at low glucose concentration (2.8 and 5.6 mM), but at high glucose concentration (16.7 mM) we observed an insulin secretion increasing of 2.7-3.0-fold than to control. The Na+ channel antagonist tetrodoxin (6 mM) decreased glucose and Cro 2-induced insulin secretion. These results suggested that Na+ channel are involved in the insulin secretion. In this article, we also purified some peptide fragment from the treatment of reduced and carboxymethylated Cro 2 (RC-Cro 2) with cyanogen bromide and protease V8 from Staphylococcus aureus. The isolated pancreatic beta-cells were then treated with peptides only at high glucose concentration (16.7 mM), in this condition only two peptides induced insulin secretion. The amino acid sequence homology analysis of the whole crotamine as well as the biologically-active peptide allowed determining the consensus region of the biologically-active crotamine responsible for insulin secretion was KGGHCFPKE and DCRWKWKCCKKGSG.
Resumo:
Phyllorhiza punctata (P. punctata) is a jellyfish native to the southwestern Pacific. Herewith we present the biochemical and pharmacological characterization of an extract of the tentacles of P. punctata. The tentacles were subjected to three freezethaw cycles, homogenized, ultrafiltered, precipitated, centrifuged and lyophilized to obtain a crude extract (PHY-N). Paralytic shellfish poisoning compounds such as saxitoxin, gonyautoxin-4, tetrodotoxin and brevetoxin-2, as well as several secretory phospholipase A2 were identified. PHY-N was tested on autonomic and somatic neuromuscular preparations. In mouse vas deferens, PHY-N induced phasic contractions that reached a peak of 234 +/- 34.7% of control twitch height, which were blocked with either 100 mu m of phentolamine or 1m m of lidocaine. In mouse corpora cavernosa, PHY-N evoked a relaxation response, which was blocked with either L-NG-Nitroarginine methyl ester (0.5 m m) or 1m m of lidocaine. PHY-N (1, 3 and 10 mu g ml(-1)) induced an increase in tonus of the biventercervicis neuromuscular preparation that was blocked with pre-treatment of galamine (10 mu m). Administration of 6 mg kg(-1) PHY-N intramuscularly produced death in broilers by spastic paralysis. In conclusion, PHY-N induces nerve depolarization and nonspecifically increases neurotransmitter release. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Ionizing radiation can change the molecular structure and affect the biological properties of biomolecules. This has been employed to attenuate animal toxins. Crotamine is a strongly basic polypeptide (pI 10.3) from Crotalus durissus terrificus venom composed of 42 amino acid residues. It induces skeletal muscle spasms leading to a spastic paralysis of hind limbs in mice. The objective of the present study was to carry out a biochemical study and a toxic activity assay on native and irradiated crotamine. Crotamine was purified from C.d. terrificus venom by Sephadex G-100 gel filtration followed by ion-exchange chromatography, and irradiated at 2 mg/ml in 0.15 M NaCl with 2.0 kGy gamma radiation emitted by a 60Co source. The native and irradiated toxins were evaluated in terms of structure and toxic activity (LD50). Irradiation did not change the protein concentration, the electrophoretic profile or the primary structure of the protein although differences were shown by spectroscopic techniques. Gamma radiation reduced crotamine toxicity by 48.3%, but did not eliminate it.
Resumo:
Crotamine is a strong basic polypeptide from Crotalus durissus terrificus (Cdt) venom composed of 42 amino acid residues tightly bound by three disulfide bonds. It causes skeletal muscle spasms leading to spastic paralysis of hind limbs in mice. The objective of this paper was to study the distribution of crotamine injected intraperitoneally (ip) in mice. Crotamine was purified from Cdt venom by gel filtration, followed by ion exchange chromatography, using a fast-performance liquid chromatography (FPLC) system. Purified crotamine was irradiated at 2 kGy in order to detoxify. Both native and irradiated proteins were labeled with 125, using chloramine T method, and separated by get filtration. Male Swiss mice were injected ip with 0.1 mL (2 x 10(6) cpm/mouse) of I-125 native or irradiated crotamine. At various time intervals, the animals were killed by ether inhalation and blood, spleen, liver, kidneys, brain, lungs, heart, and skeletal muscle were collected in order to determine the radioactivity content. The highest levels of radioactivity were found in the kidneys and the liver, and the lowest in the brain. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Tetanus neurotoxin causes the spastic paralysis of tetanus by blocking neurotransmitter release at inhibitory synapses of the spinal cord. This is due to the penetration of the toxin inside the neuronal cytosol where it cleaves specifically VAMP/synaptobrevin, an essential component of the neuroexocytosis apparatus. Here we show that tetanus neurotoxin is internalized inside the lumen of small synaptic vesicles following the process of vesicle reuptake. Vesicle acidification is essential for the toxin translocation in the cytosol, which results in the proteolytic cleavage of VAMP/synaptobrevin and block of exocytosis.
Resumo:
In this work we isolated a novel crotamine like protein from the Crotalus durissus cascavella venom by combination of molecular exclusion and analytical reverse phase HPLC. Its primary structure was:YKRCHKKGGHCFPKEKICLPPSSDLGKMDCRWKRK-CCKKGS GK. This protein showed a molecular mass of 4892.89 da that was determined by Matrix Assisted Laser Desorption Ionization Time-of-flight (MALDI-TOF) mass spectrometry. The approximately pI value of this protein was determined in 9.9 by two-dimensional electrophoresis. This crotamine-like protein isolated here and that named as Cro 2 produced skeletal muscle spasm and spastic paralysis in mice similarly to other crotamines like proteins. Cro 2 did not modify the insulin secretion at low glucose concentration (2.8 and 5.6 mM), but at high glucose concentration (16.7 mM) we observed an insulin secretion increasing of 2.7-3.0-fold than to control. The Na+ channel antagonist tetrodoxin (6 mM) decreased glucose and Cro 2-induced insulin secretion. These results suggested that Na+ channel are involved in the insulin secretion. In this article, we also purified some peptide fragment from the treatment of reduced and carboxymethylated Cro 2 (RC-Cro 2) with cyanogen bromide and protease V8 from Staphylococcus aureus. The isolated pancreatic beta-cells were then treated with peptides only at high glucose concentration (16.7 mM), in this condition only two peptides induced insulin secretion. The amino acid sequence homology analysis of the whole crotamine as well as the biologically-active peptide allowed determining the consensus region of the biologically-active crotamine responsible for insulin secretion was KGGHCFPKE and DCRWKWKCCKKGSG.
Resumo:
In his 2007 PESA keynote address, Paul Smeyers discussed the increasing regulation of child-rearing through government intervention and the generation of “experts,” citing particular examples from Europe where cases of childhood obesity and parental neglect have stirred public opinion and political debate. In his paper (this issue), Smeyers touches on a number of tensions before concluding that child rearing qualifies as a practice in which liberal governments should be reluctant to intervene. In response, I draw on recent experiences in Australia and argue that certain tragic events of late are the result of an ethical, moral and social vacuum in which these tensions coalesce. While I agree with Smeyers that governments should be reluctant to “intervene” in the private domain of the family, I argue that there is a difference between intervention and support. In concluding, I maintain that if certain Western liberal democracies did a more comprehensive job of supporting children and their families through active social investment in primary school education, then both families and schools would be better equipped to deal with the challenges they now face.
Resumo:
Data on the influence of unilateral vocal fold paralysis on breathing, especially other than information obtained by spirometry, are relatively scarce. Even less is known about the effect of its treatment by vocal fold medialization. Consequently, there was a need to study the issue by combining multiple instruments capable of assessing airflow dynamics and voice. This need was emphasized by a recently developed medialization technique, autologous fascia injection; its effects on breathing have not previously been investigated. A cohort of ten patients with unilateral vocal fold paralysis was studied before and after autologous fascia injection by using flow-volume spirometry, body plethysmography and acoustic analysis of breathing and voice. Preoperative results were compared with those of ten healthy controls. A second cohort of 11 subjects with unilateral vocal fold paralysis was studied pre- and postoperatively by using flow-volume spirometry, impulse oscillometry, acoustic analysis of voice, voice handicap index and subjective assessment of dyspnoea. Preoperative peak inspiratory flow and specific airway conductance were significantly lower and airway resistance was significantly higher in the patients than in the healthy controls (78% vs. 107%, 73% vs. 116% and 182% vs. 125% of predicted; p = 0.004, p = 0.004 and p = 0.026, respectively). Patients had a higher root mean square of spectral power of tracheal sounds than controls, and three of them had wheezes as opposed to no wheezing in healthy subjects. Autologous fascia injection significantly improved acoustic parameters of the voice in both cohorts and voice handicap index in the latter cohort, indicating that this procedure successfully improved voice in unilateral vocal fold paralysis. Peak inspiratory flow decreased significantly as a consequence of this procedure (from 4.54 ± 1.68 l to 4.21 ± 1.26 l, p = 0.03, in pooled data of both cohorts), but no change occurred in the other variables of flow-volume spirometry, body-plethysmography and impulse oscillometry. Eight of the ten patients studied by acoustic analysis of breathing had wheezes after vocal fold medialization compared with only three patients before the procedure, and the numbers of wheezes per recorded inspirium and expirium increased significantly (from 0.02 to 0.42 and from 0.03 to 0.36; p = 0.028 and p = 0.043, respectively). In conclusion, unilateral vocal fold paralysis was observed to disturb forced breathing and also to cause some signs of disturbed tidal breathing. Findings of flow volume spirometry were consistent with variable extra-thoracic obstruction. Vocal fold medialization by autologous fascia injection improved the quality of the voice in patients with unilateral vocal fold paralysis, but also decreased peak inspiratory flow and induced wheezing during tidal breathing. However, these airflow changes did not appear to cause significant symptoms in patients.
Resumo:
The purpose of this dissertation was to study the applicability of minced autologous fascia graft for injection laryngoplasty of unilateral vocal fold paralysis (UVFP). Permanence of augmentation and host versus graft tissue reactions were of special interest. The topic deals with phonosurgery, which is a subdivision of the Ear, Nose and Throat-speciality of medicine. UVFP results from an injury to the recurrent or the vagal nerve. The main symptom is a hoarse and weak voice. Surgery is warranted for patients in whom spontaneous reinnervation and a course of voice therapy fails to improve the voice. Injection laryngoplasty is a widespread surgical technique which aims to restore glottic closure by augmenting the atrophied vocal muscle, and also by turning the paralyzed vocal fold towards midline. Currently, there exists a great diversity of synthetic, xenologous, homologous, and autologous substances available for injection. An autologous graft is perfect in terms of biocompatibility. Free fascia grafts have been successfully used in the head and neck surgery for decades, but fascia had not been previously applied into the vocal fold. The fascia is harvested from the lateral thigh under local anesthesia and minced into paste by scissors. Injection of the vocal fold is performed in laryngomicroscopy under general anesthesia. Three series of clinical trials of injection laryngoplasty with autologous fascia (ILAF) for patients with UVFP were conducted at the Department of Otorhinolaryngology of the Helsinki University Central Hospital. The follow-up ranged from a few months to ten years. The aim was to document the vocal results and possible morbidity related to graft harvesting and vocal fold injection. To address the tissue reactions and the degree of reabsoprtion of the graft, an animal study with a follow-up ranging from 3 days to 12 months was performed at the National Laboratory Animal Center, University of Kuopio. Harvesting of the graft and injection was met with minor morbidity. Histological analysis of the vocal fold tissue showed that fascia was well tolerated. Although some resorption or compaction of the graft during the first months is evident, graft volume is maintained well. When injected deep and laterally into the vocalis muscle, the fascia graft allows normal vibration of the vocal fold mucosa to occur during phonation. Improvement of voice quality was seen in all series by multiple objective parameters of voice evaluation. However, the vocal results were poor in cases where the nerve trauma was severe, such as UVFP after chest surgery. ILAF is most suitable for correction of mild to moderate glottic gaps related to less severe nerve damage. Our results indicate that autologous fascia is a feasible and safe new injection material with good and stable vocal results. It offers a practical solution for surgeons who treat this complex issue.