1000 resultados para southern Tibet


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inventory of isolated tree stands surrounded by desert pastures in Southern Tibet (A.R. Xizang, China) revealed more than 50 sites with vigorous trees of Juniperus convallium Rehder & E.H. Wilson and Juniperus tibetica Kom and additional more than 10 records where juniper trees had been destroyed between 1959-1976. The tree stands are not restricted to any specific habitat, and occur within an area stretching 650 km westwards from the current forest border of Southern Tibet. The trees are religious landmarks of the Tibetan Buddhists. The highest trees were found at an elevation of 4,860 m. Vegetation records, rainfall correlations and temperature data collected by local climate stations and successful reforestation trials since 1999 indicate that forest relicts fragmented through human interference could regenerate if current cattle grazing and deforestation practices are halted. The drought line of Juniperus forests in Southern Tibet is approximately 200-250 mm/a. A first pollen diagram from Lhasa shows forest decline associated with the presence of humans since at least 4,600 yr BP. The currently degraded commons developed in the last 600 yr. To date, no findings of remains of ancient forests in the Central Tibetan Highlands of the Changtang have been reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brachiopod fauna of 16 species belonging to 11 genera and three genera and species indeterminate from the middle and upper parts of the Juripu Formation in the Yarlung-Zangbo (Indus-Tsangbo) Suture zone (=Yarlung-Zangbo River zone), southern Tibet, is described and figured for the first time. A new species, Taeniothaerus zhongbaensis, is described. The fauna is comparable with that in the Kalabagh Member of the Wargal Formation of the Salt Range, Pakistan, and is considered to be most likely Capitanian (late Guadalupian/Middle Permian) to Wuchiapingian (early Lopingian/early Late Permian) in age, as indicated by the majority of the brachiopod species and by being constrained by an underlying fusulinacean fauna (Parafusulina Zone) and an overlying ammonite fauna (Cyclolobus fauna).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brachiopod fauna including 19 species of 17 genera from an exotic block in the Indus–Tsangpo suture zone in southern Tibet is described and illustrated. The brachiopod fauna is dominated by Martinia elegans and two new taxa: Jinomarginifera lhazeensis gen. et sp. nov. and Zhejiangospirifer giganteus sp. nov. The fauna is closely comparable with those from the middle and upper parts of the Wargal Formation and the Chhidru Formation in the Salt Range of Pakistan, the Chitichun Limestone in southern Tibet, and the Basleo area of West Timor, and these correlations suggest a Wuchiapingian age. The fauna exhibits substantial links with both peri–Gondwanan and Cathaysian faunas, which may imply that it is a seamount biota originally located in the southern margin of the Neotethys during the Late Permian, and was later (in the early Cenozoic) displaced and became sandwiched into younger marine deposits in the collision process between India and Eurasia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations of the Permian-Triassic sections and limestone blocks scattered in the Indus-Tsangbo Suture Zone in southern Tibet show widespread distribution of the Lopingian strata. The Lopingian deposits mostly contain rich brachiopod fossils and characteristic conodonts of the Mesogondolella shenz Zone of latest Changhsingian age in the topmost part. Brachiopod assemblages are largely comparable with those known from the upper Wargal and Chhidru Formations of the Salt Range, Pakistan, the Zewan Formation of Kashmir, the upper part of the Kuling Group in Spiti of India and the Hardman Formation of Western Australia. A revised Lopingian (Late Permian) age is proposed for the Selong Group and its equivalents in southern Tibet. The Lopingian deposits in southern Tibet can be grouped into three different sedimentary types, each of which reflects different sedimentary environments from coastal to continental shelfal settings on the northern peri-Gondwanan margin. The Qubu-type sequence represents marine coastal and proximal barrier-lagoon sediments during a gradual sea-level rise. Micaceous sandstone and shale of regressive origin, with abundant palynomorphs and acritarches, developed during the Late Lopingian sea-level lowstand, which is followed by a major rapid transgression at the very end of Permian. The Selong-type sequence in the Selong area consists of bioclastic limestone and calcareous shale in the lower part, and crinoid grainstone in the upper part. The latter part is believed to have been formed in a high-energy inner shelf shoal setting. The Chitichun-type sequence, sporadically distributed along the Indus-Tsangbo suture zone as small limestone blocks, consists of pure bioclastic sparite with the ammonoid Cyclolobus fauna. It is interpreted as the break-up products of sea-mounts and/or small isolated carbonate build-ups developed on the outer shelfal settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Results of pedogeomorphological, geochronological and paleobotanical investigations are presented covering the last ca. 4,000 years. The study sites are located in the heavily degraded Kyichu River catchment around Lhasa at 3,600-4,600 m a.s.l. Repeatedly, colluvial sediments have been recorded overlying paleosols. These deposits can be divided into i) coarse-grained sediments with a high proportion of stones and boulders originating from alluvial fans and debris flows, ii) matrix supported sediments with some stones and boulders originating from mudflows or combined colluvial processes such as hillwash plus rock fall, and iii) fine-grained sediments originating from hill wash. The IRSL multi-level dating of profile QUG 1 points to a short-time colluvial sedimentation between 1.0 ± 0.1 and 0.8 ± 0.1 ka. In contrast, dated paleosols of profile GAR 1 (7,908 ± 99 and 3,668 ± 57 BP) encompass a first colluvial episode. Here, the upper colluvial sedimentation took place during several periods between 2.6 ± 0.3 and 0.4 ± 0.1 ka. For the first time in Tibet, a systematic extraction, determination and dating of charcoals from buried paleosols was conducted. The charcoals confirm the Late Holocene presence of juniper forests or woodlands in a now treeless, barren environment. A pollen diagram from Lhasa shows a distinct decline of pollen of the Jumperus-type around 4,140 ± 50 BP, which is interpreted as indicating a clearing of forests on the adjacent slopes. It is assumed that the environmental changes from forests to desertic rangelands since ca. 4,000 BP have been at least reinforced by humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The transition from the last Glacial to the current Interglacial, the Holocene, represents an important period with climatic and environmental changes impacting ecosystems. In this study, we examined the interplay between the Indian Ocean Summer Monsoon (IOSM) and the Westerlies at lake Nam Co, southern Tibet to understand the climatic effects on the ecosystem. Different organic geochemical proxies (n-alkanes, glycerol dialkyl glycerol tetraethers, dD, d13Corg, d15N) are applied to reconstruct the environmental and hydrological changes on one of the longest available paleorecords at the Tibetan Plateau. Based on our paleohydrological dD proxies, the aquatic signal lags the terrestrial one due to specific ecological thresholds, which, in addition to climatic changes, can influence aquatic organisms. The aquatic organisms' response strongly depends on temperature and associated lake size, as well as pH and nutrient availability. Because the terrestrial vegetation reacts faster and more sensitively to changes in the monsoonal and climatic system, the dD of n-C29 and the reconstructed inflow water signal represent an appropriate IOSM proxy. In general, the interplay of the different air masses seems to be primarily controlled by solar insolation. In the Holocene, the high insolation generates a large land-ocean pressure gradient associated with strong monsoonal winds and the strongest IOSM. In the last glacial period, however, the weak insolation promoted the Westerlies, thereby increasing their influence at the Tibetan Plateau. Our results help to elucidate the variable IOSM, and they illustrate a remarkable shift in the lake system regarding pH, d13Corg and d15N from the last glacial to the Holocene interglacial period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides information about the distribution, structure, and ecology of the world's largest alpine ecosystem, the Kobresia pygmaea pastures in the southeastern Tibetan plateau. The environmental importance of these Cyperaceae mats derives from the extremely firm turf, which protects large surfaces against erosion, including the headwaters of the Huang He, Yangtze, Mekong, Salween, and Brahmaputra. The emphasis of the present article is on the climate-driven evolution and recent dynamics of these mats under the grazing impact of small mammals and livestock. Considering pedological analyses, radiocarbon datings, and results from exclosure experiments, we hypothesize that the majority of K. pygmaea mats are human-induced and replace forests, scrub, and taller grasslands. At present, the carrying capacity is increasingly exceeded, and reinforced settlement of nomads threatens this ecosystem especially in its drier part, where small mammals become strong competitors with livestock and the removal of the turf is irreversible. Examples of rehabilitation measures are given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the most spectacular and youngest case of continental collision on the Earth, to investigate the crust and mantle of Tibetan plateau, and then to reveal its characters of structure and deformation, are most important to understand its deformation mechanism and deep process. A great number of surface wave data were initially collected from events occurred between 1980 and 2002, which were recorded by 13 broadband digital stations in Eurasia and India. Up to 1,525 source-station Rayleigh waveforms and 1,464 Love wave trains were analysed to obtain group velocity dispersions, accompanying with the detail and quantitative assessment of the fitness of the classic Ray Theory, errors from focal and measurements. Assuming the model region covered by a mesh of 2ox2o-sized grid-cells, we have used the damped least-squares approach and the SVD to carry out tomographic inversion, SV- and SH-wave velocity images of the crust and upper mantle beneath the Tibetan Plateau and surroundings are obtained, and then the radial anisotropy is computed from the Love-Rayleigh discrepancy. The main results demonstrate that follows, a) The Moho beneath the Tibetan Plateau presents an undulating shape that lies between 65 and 74 km, and a clear correlation between the elevations of the plateau and the Moho topography suggests that at least a great part of the highly raised plateau is isostatically compensated. b) The lithospheric root presents a depth that can be substantiated at ~140 km (Qiangtang Block) and exceptionally at ~180 km (Lhasa Block), and exhibits laterally varying fast velocity between 4.6 and 4.7 km/s, even ~4.8 km/s under northern Lhasa Block and Qiangtang Block, which may be correlated with the presence of a shield-like upper mantle beneath the Tibetan Plateau and therefore looked as one of the geophysical tests confirming the underthrusting of India, whose leading edge might have exceeded the Bangong-Nujiang Suture, even the Jinsha Suture. c) The asthenosphere is depicted by a low velocity channel at depths between 140 and 220 km with negative velocity gradient and velocities as low as 4.2 km/s; d) Areas in which transverse radial anisotropy is in excess of ~4% and 6% on the average anisotropy are found in the crust and upper mantle underlying most of the Plateau, and up to 8% in some places. The strength, spatial configuration and sign of radial anisotropy seem to indicate the existence of a regime of horizontal compressive forces in the frame of the convergent orogen at the same time that laterally varying lithospheric rheology and a differential movement as regards the compressive driving forces. e) Slow-velocity anomalies of 12% or more in southern Tibet and the eastern edge of the Plateau support the idea of a mechanically weak middle-to-lower crust and the existence of crustal flow in Tibet.