977 resultados para solvent free
Resumo:
Mesoporous titania microspheres composed of nanosheets with exposed active facets were prepared by hydrothermal synthesis in the presence of hexafluorosilicic acid. They exhibited superior catalytic activity in the solvent-free synthesis of azoxybenzene by oxidation of aniline and could be used for 7 cycles with slight loss of activity.
Resumo:
Diversely substituted hydantoins have been synthesized by new strategy from cyanamide based precursor, that is, methyl N-cyano-N-alkyl/arylaminoacetate. Dialkylphosphates were employed as the mild reagent to hydrolyze and cyclize the substrate in one step to give quantitative yields of the desired products. Syntheses of multivalent hydantoins viz bis-hydantoin, bicyclohydantoin have potentially widened the scope and applicability of the present method. Solvent-free conditions and very easy work-up procedure make the reaction convenient and eco-friendly. Single crystal structures of some of the representative compounds are also reported. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A solvent-free synthesis of alpha-aminonitriles and beta-nitroamines by oxidative cross-dehydrogenative coupling under aerobic condition is reported. A catalytic amount of molybdenum(VI) acetylacetonoate was found to catalyze cyanation of tertiary amines to form alpha-aminonitriles, whereas vanadium pentoxide was found to promote aza-Henry reaction to furnish beta-nitroamines. Both of these environmentally benign reactions are performed in the absence of solvents using molecular oxygen as an oxidant.
Resumo:
A novel approach for the synthesis of N-1 substituted thiohydantoin has been developed to give quantitative yields of the desired products. The efficient synthesis of bis-thiohydantoin derivative and bicyclothiohydantoin has extended scope and applicability of present method. Solvent-free conditions and very easy work-up procedure make the reaction convenient and eco-friendly. All the products were characterized by spectroscopic techniques and elemental analysis, and finally the structure of representative ;compound was also confirmed by X-ray crystallography. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A rapid, metal-free and solvent-free (very low loading of solvent in few cases) reaction conditions for synthesizing thioamides and amides using a Bronsted super acid such as triflic acid has been developed. This method shows a broad substrate scope with a variety of electron-rich arenes including thiophene derivatives. The reaction works well for both aromatic as well as aliphatic isothiocyanates. Most of the thioamides are obtained in excellent yields in short reaction times and in most of the examples, a simple work up procedure has been developed which does not require further purification.
Resumo:
Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell(1) (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability(3).
Resumo:
We report a high molar extinction coefficient metal-free sensitizer composed of a triarylamine donor in combination with the 2-(2,2'-bithiophen-5-yl)acrylonitrile conjugation unit and cyanoacrylic acid as an acceptor. In conjugation with a volatile acetonitrile-based electrolyte or a solvent-free ionic liquid electrolyte, we have fabricated efficient dye-sensitized solar cells showing a corresponding 7.5% or 6.1% efficiency measured under the air mass 1.5 global sunlight. The ionic liquid cell exhibits excellent stability during a 1000 h accelerated test under the light-soaking and thermal dual stress. Intensity-modulated photocurrent and photovolatge spectroscopies were employed along with the transient photoelectrical decay measurements to detail the electron transport in the mesoporous titania films filled with these two electrolytes.
Resumo:
We systematically studied the temperature-dependent physicochemical properties, such as density, conductivity, and fluidity, of 1,3-dialkylimidazolium iodides. In combination with the amphiphilic Z907Na sensitizer, we have found that it is important to use low-viscosity iodide melts with small cations to achieve high-efficiency dye-sensitized solar cells. By employing high-fluidity eutectic-based melts the device efficiencies considerably increased compared to those for cells with the corresponding state of the art ionic liquid electrolytes.
Resumo:
We prepared four new ionic liquids consisting of N-methyl-N-allylpyrrolidinium cation in conjunction with anions including iodide, nitrate, thiocyanate, and dicyanamide, respectively, and measured their physical properties of density, viscosity, and conductivity. Owing to the relatively lower melting point of electroactive N-methyl-N-allylpyrrolidinium iodide, in combination with three other nonelectroactive ionic liquids, we could construct solvent-free electrolytes possessing high iodide concentrations for dye-sensitized solar cells. We correlated temperature-dependent electrolyte viscosity with molar conductivity and triiodide mobility through applying an empirical Walden's rule and a modified Stokes-Einstein equation, respectively. We have further found that these anions (nitrate, thiocyanate, and dicyanamide) have different influences on surface states and electron transport in the mesoporous titania film, resulting in different photovoltages and photocurrents of dye-sensitized solar cells.
An array-based study of reactivity under solvent-free mechanochemical conditions-insights and trends
Resumo:
An array-based approach is put forward to obtain insight into reactivity under mechanochemical solvent-free conditions. We describe a survey of sixty potential reactions between twelve metal salts MX2 {(M = Cu, X-2 = (OAc)(2), (HCO2)(2), (F3CCO2)(2), (acac)(2), (F(6)acac)(2), (NO3)(2), SO4; M = Ni, X-2 = (OAc)(2), (NO3)(2), SO4; M = Zn, X-2 (OAc)(2), (NO3)(2)} and five bridging organic ligands {isonicotinic acid (HINA), 1,4-benzenedicarboxylic acid (H2BDC), acetylenedicarboxylic acid (H(2)ADC), 1,3,5-benzenetricarboxylic acid (H3BTC), 4,4'-bipyridyl (BIPY). Reaction conditions involved a ball mill, applied for 15 min at 30 Hz, without external heating. When examined by XRPD, forty of the combinations gave detectable reactions, thirty-eight with crystalline products. Of these, twenty-nine reactions were quantitative (consuming all of at least one reactant). Comparison of XRPD patterns with patterns simulated from single crystal X-ray diffraction data in the Cambridge Structural Database allowed structural identification of six products. Of particular interest are the microporous framework materials [Cu(INA)(2)] and [Cu-3(BTC)(2)] (HKUST-1) obtained by reaction of the corresponding carboxylic acids with copper acetate. Other non-porous polymers with 3-dimensional connectivity, [Ni(ADC)(H2O)(4)], or 1-dimensional connectivity, [Cu(acac)(2)(BIPY)] and [Cu(F6acac)(BIPY)] were also obtained. Reaction between zinc acetate and H2ADC gave a new product which had not previously been characterised by single-crystal X-ray crystallography, but whose XRPD pattern suggests that it is isostructural with the known nickel polymer [Ni(ADC)(H2O)(4)]. Two further isostructural nickel and zinc products were obtained in reactions between HINA and nickel nitrate and zinc nitrate. Trends observed within the array are discussed. Copper acetate and copper formate were the most effective starting materials for reaction with carboxylic acids, potentially related to the basicity of their anions and the solvating effects of the formic and acetic acid byproducts. Amongst the ligands there was a general negative corelation between melting point and reactivity. The issue of pore templating in microporous phases and the generation of new structures is also discussed in relation to the Cu(INA)(2), Cu-3(BTC)(2) and nickel nitrate-BIPY systems. Overall, the study suggests that mechanochemical reactivity between metal salts and organic ligands under solvent free conditions is remarkably general. Use of array-based approaches as demonstrated here is advocated a useful way to reveal underlying trends in reactivity under solvent free mechanochemical conditions and to highlight particular cases for more detailed study.
Resumo:
Persilylation of nucleoside hydroxyls was effected in quantitative yields under solvent-free conditions using a ball mill. In addition, one-pot persilylation and acylation of cytidine was performed as an exemplar reaction demonstrating the utility of solvent-free approaches to nucleoside chemistry.