732 resultados para solitary Oxaea flavescens
Resumo:
The sternal glands of the abdomen of Oxaea flavescens consist of class ill glandular cells, with the excretory canaliculus linking to the lateral intersegmental membrane of segments ill, TV and V. The intersegmental membrane is augmented and folded into several lobes forming a reservoir covered by secretory cells. The intersegmental membrane is then transformed into an intima that lines a reservoir space containing secretions of a type of mucus which is periodic acid-Schiff positive. The storage of a great amount of secretion suggests that it is not used continuously. These glands are absent from males, indicating that their products must have a specific function linked to the female sex.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Realizaram-se estudos sobre sistemas de reprodução de Cassia spectabilis (L.) D C. (Leguminosae) observando-se a diversidade, freqüência e constância dos insetos visitantes em diferentes horários. Também testou-se a influência dos fatores ambientais em relação às visitas. Os resultados de polinização manual sugerem que C. spectabilis é autocompatível, porém, a xenogamia é o sistema de reprodução predominante. As inflorescências foram visitadas por uma grande quantidade de insetos, havendo predominância de abelhas. O horário de maior ocorrência dos insetos nas flores de C. spectabilis foi das 8 às 14 h e de menor ocorrência entre 7 e 8 h e das 17 às 18 h. Quanto ao comportamento dos insetos em relação à flor de C. spectabilis, observou-se que Xylocopa frontalis Olivier, X. suspecta Camargo & Moure, Bombus morio Swederus e Centris scopipes Friese possuem comportamento e morfologia adequados aos polinizadores legítimos; C. similis F., Oxaea flavescens Klug e Epicharis rustica flava Cockerell foram considerados polinizadores ocasionais. Pseudaugochloropsis graminea (F.), Tetragonisca angustula Latreille e A. mellifera L. foram considerados pilhadores. A polinização por vibração é o método usado pelas abelhas para coleta de pólen.
Resumo:
A polinização é um serviço indireto prestado pelos ecossistemas, de valor ambiental e econômico para a sociedade humana. Em função dessa importância, a conservação de espécies de abelhas nativas é fundamental e o conhecimento de aspectos da biologia e ecologia dessas espécies é a base para a proposição de planos de manejo e conservação. Neste trabalho, foram feitas observações focais, avaliando os padrões de atividades diárias e sazonais, com ênfase no comportamento de coletas de recursos de abelhas nativas em flores de Solanum lycocarpum, uma espécie em que é característica a síndrome de polinização vibrátil. Os visitantes observados foram dez espécies de abelhas: Apis mellifera L., Oxaea flavescens K.; Centris sp1, Centris sp2, Exomalopsis sp.., Xylocopa suspecta M., Xylocopa frontalis K., Bombus morio S., Bombus atratus F., Trigona sp., além de espécies de abelhas da família Halictidae. As abelhas maiores, como Xylocopa, Oxaea, Centris e Bombus são certamente os polinizadores mais eficientes de Solanum lycocarpum. Isso se deve ao comportamento dessas abelhas nas flores, particularmente em relação à posição da abelha em relação ao cone de anteras quando forrageia e à seqüência de movimentos que cada uma desenvolve nas flores.
Resumo:
Nanosecond dynamics of two separated discharge cycles in an asymmetric dielectric barrier discharge is studied using time-resolved current and voltage measurements synchronized with high-speed (∼5 ns) optical imaging. Nanosecond dc pulses with tailored raise and fall times are used to generate solitary filamentary structures (SFSs) during the first cycle and a uniform glow during the second. The SFSs feature ∼1.5 mm thickness, ∼1.9 A peak current, and a lifetime of several hundred nanoseconds, at least an order of magnitude larger than in common microdischarges. This can be used in alternating localized and uniform high-current plasma treatments in various applications.
Resumo:
By using a perturbation technique, the Korteweg-de Vries equation is derived for a mixture of warm-ion fluid and hot, isothermal electrons. Stationary solutions are obtained for this equation and are compared with the corresponding solutions for a mixture consisting of cold-ion fluid and hot, isothermal electrons.
Resumo:
Using a perturbation technique, we derive Modified Korteweg—de Vries (MKdV) equations for a mixture of warm-ion fluid (γ i = 3) and hot and non-isothermal electrons (γ e> 1), (i) when deviations from isothermality are finite, and (ii) when deviations from isothermality are small. We obtain stationary solutions for these equations, and compare them with the corresponding solutions for a mixture of warm-ion fluid (γ i = 3) and hot, isothermal electrons (γ i = 1).
Resumo:
In contrast to earlier observations on various solitary wave propagations, especially those bifurcated by the compressive and rarefactive solitary waves, the existence of spiky and explosive solitary waves is here believed to arise because of the presence of free and trapped electrons. So far, very few studies have been carried out to satisfactorily explain the presence of the solitary waves in space as observed by satellites. It is also attempted to highlight the probable impact on the various solitary wave propagations in a generalized multi-component, inhomogeneous plasma upon consideration of a relativistic treatment. It is expected that such a treatment will prove the existence of the solitary waves most expeditiously and exhibit the presence of chaos therein, thus giving a suitable explanation to the observations of various forms of spiky and explosive solitary waves in space-plasma. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
By using the perturbation technique, a Kortewege-de-Vries (K-dV) equation for a multicomponent plasma with negative ions and isothermal electrons has been derived. We have discussed the stationary solutions of K-dV equation and it has shown that in the presece of multiple ions, the amplitude of solitons exhibits interesting behaviour, especiallY when the negative ions are present.
Resumo:
The poison gland and Dufour's gland are the two glands associated with the sting apparatus in female Apocrita (Hymenoptera). While the poison gland usually functions as an integral part of the venom delivery system, the Dufour's gland has been found to differ in its function in various hymenopteran groups. Like all exocrine glands, the function of the Dufour's gland is to secrete chemicals, but the nature and function of the secretions varies in different taxa. Functions of the Dufour's gland secretions range from serving as a component of material used in nest building, larval food, and pheromones involved in communicative functions that are important for both solitary and social species. This review summarizes the different functions reported for the Dufour's gland in hymenopterans, illustrating how the Dufour's gland secretions can be adapted to give rise to various functions in response to different challenges posed by the ways of life followed by different taxa. Aspects of development, structure, chemistry and the evolution of different functions are also touched upon briefly.
Resumo:
In many primitively eusocial wasp species new nests are founded either by a single female or by a small group of females. In the single foundress nests, the lone female develops her ovaries, lays eggs as well as tends her brood. In multiple foundress nests social interactions, especially dominance-subordinate interactions, result in only one `dominant' female developing her ovaries and laying eggs. Ovaries of the remaining `subordinate' cofoundresses remain suppressed and these individuals function as workers and tend the dominant's brood. Using the tropical, primitively eusocial polistine wasp Ropalidia marginata and by comparing wasps held in isolation and those kept as pairs in the laboratory, we demonstrate that social interactions affect ovarian development of dominant and subordinate wasps among the pairs in opposite directions, suppressing the ovaries of the subordinate member of the pair below that of solitary wasps and boosting the ovaries of dominant member of the pair above that of solitary females. In addition to being of physiological interest, such mirror image effects of aggression on the ovaries of the aggressors and their victims, suggest yet another mechanism by which subordinates can enhance their indirect fitness and facilitate the evolution of worker behavior by kin selection. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Electromagnetic field produced by a lightning strike to ground causes significant induction to tall objects in the vicinity. The frequency of occurrence of such nearby ground strikes can be higher than the number of direct strikes. Therefore, a complete knowledge on these induced currents is of practical relevance. However, limited efforts towards the characterisation of such induced currents in tall down-conductors could be seen in the literature. Due to the intensification of the background field caused by the descending stepped leader, tall towers/down-conductors can launch upward leaders of significant length. The nonlinearity in the conductance of upward leader and the surrounding corona sheath can alter the characteristics of the induced currents. Preliminary aspects of this phenomenon have been studied by the author previously and the present work aims to perform a detailed investigation on the role of upward leaders in modifying the characteristics of the induced currents. A consistent model for the upward leader, which covers all the essential electrical aspects of the phenomena, is employed. A first order arc model for representing the conductance of upward leader and a field dependant quadratic conductivity model for the corona sheath is employed. The initial gradient in the upward leader and the field produced by the return stroke forms the excitation. The dynamic electromagnetic response is determined by solving the wave equation using thin-wire time-domain formulation. Simulations are carried out initially to ascertain the role of individual parameters, including the length of the upward leader. Based on the simulation results, it is shown that the upward leader enhances the induced current, and when significant in length, can alter the waveshape of induced current from bipolar oscillatory to unipolar. The duration of the induced current is governed by the length of upward leader, which in turn is dependant on the return stroke current and the effective length of the down-conductor. If the current during the upward leader developmental phase is considered along with that after the stroke termination to ground, it would present a bipolar current pulse. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the effect of the surface tension is considered carefully in the study of non-propagating solitary waves. The parameter plane of the surface tension and the fluid depth is divided into three regions; in two of them a breather soliton can be produced. In literature the parameters of breather solitons are all in one of the parameter regions. The new region reported here has been confirmed by our experiments. In the third region, the theoretical solution is a kink soliton, but a kind of the non-propagating solitary wave similar to the breather soliton was found in our experiments besides the kink soliton.
Resumo:
The effect of variable currents on internal solitary waves is described within the context of a variable coefficient Korteweg-de Vries (KdV) equation, and the approximate slowly varying, solitary-wave solution of this equation. The general theory which leads to the variable coefficient KdV equation is described; a derivation for the special case when the solitary wave and the current are aligned in the same direction is given in the Appendix. Using further simplifications and approximations, a number of analytical expressions are obtained for the variation in the solitary wave amplitude resulting from variable shear in the basic current or from when the basic current is a depth-independent flow which is a simple representation of a geostrophic current, tidal flow or inertial wave.