966 resultados para solid-phase extraction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas chromatography with mass spectrometry is frequently used for the quantification of many classes of substances, including alkylphenols. Alkylphenol polyethoxylates are nonionic surfactants used in a wide variety of industrial and consumer applications. Alkylphenol polyethoxylates can degrade to alkylphenols, which are endocrine disruptors. In analytical validation procedures, the most common parameters studied are the detection and quantification limits, linearity, and recovery; however, the matrix effects are sometimes neglected. Although some investigators have evaluated matrix effects, there is no consensus on how to evaluate them during method validation. In this study, the matrix effects of alkylphenol polyethoxylates (nonylphenol monoethoxylate, nonylphenol diethoxylate, octylphenol monoethoxylate, octylphenol diethoxylate) and alkylphenols (nonylphenol and octylphenol) were studied using solid phase extraction and gas chromatography-mass spectrometry analysis. For alkylphenol polyethoxylates, the matrix effects ranged from 16 to 4692%, whereas for alkylphenols (nonylphenol and octylphenol), the effects were insignificant. Therefore, constructing an analytical curve in the matrix for alkylphenol polyethoxylates is essential. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carnitine is an amino acid derivative that plays a key role in energy metabolism. Endogenous carnitine is found in its free form or esterified with acyl groups of several chain lengths. Quantification of carnitine and acylcarnitines is of particular interest for screening for research and metabolic disorders. We developed a method with online solid-phase extraction coupled to high-performance liquid chromatography and tandem mass spectrometry to quantify carnitine and three acylcarnitines with different polarity (acetylcarnitine, octanoylcarnitine, and palmitoylcarnitine). Plasma samples were deproteinized with methanol, loaded on a cation exchange trapping column and separated on a reversed-phase C8 column using heptafluorobutyric acid as an ion-pairing reagent. Considering the endogenous nature of the analytes, we quantified with the standard addition method and with external deuterated standards. Solid-phase extraction and separation were achieved within 8 min. Recoveries of carnitine and acylcarnitines were between 98 and 105 %. Both quantification methods were equally accurate (all values within 84 to 116 % of target concentrations) and precise (day-to-day variation of less than 18 %) for all carnitine species and concentrations analyzed. The method was used successfully for determination of carnitine and acylcarnitines in different human samples. In conclusion, we present a method for simultaneous quantification of carnitine and acylcarnitines with a rapid sample work-up. This approach requires small sample volumes and a short analysis time, and it can be applied for the determination of other acylcarnitines than the acylcarnitines tested. The method is useful for applications in research and clinical routine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the development and validation of a gas chromatography-mass spectrometry (GC-MS) method to identify and quantitate phenytoin in brain microdialysate, saliva and blood from human samples. A solid-phase extraction (SPE) was performed with a nonpolar C8-SCX column. The eluate was evaporated with nitrogen (50°C) and derivatized with trimethylsulfonium hydroxide before GC-MS analysis. As the internal standard, 5-(p-methylphenyl)-5-phenylhydantoin was used. The MS was run in scan mode and the identification was made with three ion fragment masses. All peaks were identified with MassLib. Spiked phenytoin samples showed recovery after SPE of ≥94%. The calibration curve (phenytoin 50 to 1,200 ng/mL, n = 6, at six concentration levels) showed good linearity and correlation (r² > 0.998). The limit of detection was 15 ng/mL; the limit of quantification was 50 ng/mL. Dried extracted samples were stable within a 15% deviation range for ≥4 weeks at room temperature. The method met International Organization for Standardization standards and was able to detect and quantify phenytoin in different biological matrices and patient samples. The GC-MS method with SPE is specific, sensitive, robust and well reproducible, and is therefore an appropriate candidate for the pharmacokinetic assessment of phenytoin concentrations in different human biological samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101–107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14–46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π–π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Sucralose has gained popularity as a low calorie artificial sweetener worldwide. Due to its high stability and persistence, sucralose has shown widespread occurrence in environmental waters, at concentrations that could reach up to several μg/L. Previous studies have used time consuming sample preparation methods (offline solid phase extraction/derivatization) or methods with rather high detection limits (direct injection) for sucralose analysis. This study described a faster and sensitive analytical method for the determination of sucralose in environmental samples. Results An online SPE-LC–MS/MS method was developed, being capable to quantify sucralose in 12 minutes using only 10 mL of sample, with method detection limits (MDLs) of 4.5 ng/L, 8.5 ng/L and 45 ng/L for deionized water, drinking and reclaimed waters (1:10 diluted with deionized water), respectively. Sucralose was detected in 82% of the reclaimed water samples at concentrations reaching up to 18 μg/L. The monthly average for a period of one year was 9.1 ± 2.9 μg/L. The calculated mass loads per capita of sucralose discharged through WWTP effluents based on the concentrations detected in wastewaters in the U. S. is 5.0 mg/day/person. As expected, the concentrations observed in drinking water were much lower but still relevant reaching as high as 465 ng/L. In order to evaluate the stability of sucralose, photodegradation experiments were performed in natural waters. Significant photodegradation of sucralose was observed only in freshwater at 254 nm. Minimal degradation (<20%) was observed for all matrices under more natural conditions (350 nm or solar simulator). The only photolysis product of sucralose identified by high resolution mass spectrometry was a de-chlorinated molecule at m/z 362.0535, with molecular formula C12H20Cl2O8. Conclusions Online SPE LC-APCI/MS/MS developed in the study was applied to more than 100 environmental samples. Sucralose was frequently detected (>80%) indicating that the conventional treatment process employed in the sewage treatment plants is not efficient for its removal. Detection of sucralose in drinking waters suggests potential contamination of surface and ground waters sources with anthropogenic wastewater streams. Its high resistance to photodegradation, minimal sorption and high solubility indicate that sucralose could be a good tracer of anthropogenic wastewater intrusion into the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aiming to introduce a multiresidue analysis for the trace detection of pesticide residues belonging to organophosphorus and triazine classes from olive oil samples, a new sample preparation methodology comprising the use of a dual layer of “tailor-made” molecularly imprinted polymers (MIPs) SPE for the simultaneous extraction of both pesticides in a single procedure has been attempted. This work has focused on the implementation of a dual MIP-layer SPE procedure (DL-MISPE) encompassing the use of two MIP layers as specific sorbents. In order to achieve higher recovery rates, the amount of MIP layers has been optimized as well as the influence of MIP packaging order. The optimized DL-MISPE approach has been used in the preconcentration of spiked organic olive oil samples with concentrations of dimethoate and terbuthylazine similar to the maximum residue limits and further quantification by HPLC. High recovery rates for dimethoate (95%) and terbuthylazine (94%) have been achieved with good accuracy and precision. Overall, this work constitutes the first attempt on the development of a dual pesticide residue methodology for the trace analysis of pesticide residues based on molecular imprinting technology. Thus, DL-MISPE constitutes a reliable, robust, and sensitive sample preparation methodology that enables preconcentration of the target pesticides in complex olive oil samples, even at levels similar to the maximum residue limits enforced by the legislation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mercury is not an essential element for plant or animal life and it is a potential environmental toxic because of its tendency to form covalent bonds with organic molecules and the high stability of the Hg-C bond. Reports estimate a total mercury concentration in natural waters ranging from 0.2 to 100 ng L-1. Due to this fact, highly sensitive methods are required for direct determination of such extremely low levels. In this work, a rapid and simple method was developed for separation and preconcentration of mercury by flow injection solid phase extraction coupled with on-line chemical vapour generation electrothermal atomic absorption spectrometry. The system is based on chelating retention of the analyte onto the mini column filled with a mesoporous silica functionalized with 1,5 bis (di-2-pyridyl) methylene thiocarbohydrazide. The main aim of this work was to develop a precise and accurate method for the determination of the Hg. Under the optima conditions and 120 s preconcentration time, the detection limit obtained was 0.009 μg L-1, with RSDs 3.7 % for 0.2 μg L-1, 4.8 % for 1 μg L-1 and enrichment factor 4, Furthermore, the method proposed has permitted the determination of Hg with a reduction in the analysis time, the sample throughput was about 18 h-1, low consumption of reagents and sample volume. The method was applied to the determination of Hg in sea water and river water. For the quality control of the analytical performance and the validation of the newly developed method, the analysis of two certified samples, TMDA 54.4 Fortified Lake, and LGC6187 River sediment was addressed. The results showed good agreement with the certified values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of capillary electrophoresis (CE) has been restricted to applications having high sample concentrations because of its low sensitivity caused by small injection volumes and, when ultraviolet (UV) detection is used, the short optical path length. Sensitivity in CE can be improved by using more sensitive detection systems, or by preconcentration techniques which are based on chromatographic and/or electrophoretic principles. One of the promising strategies to improve sensitivity is solid phase extraction (SPE). Solid Phase Extraction utilizes high sample volumes and a variety of complex matrixes to facilitate trace detection. To increase the specificity of the SPE a selective solid phase must be chosen. Immunosorbents, which are a combination of an antibody and a solid support, have proven to be an excellent option because of high selectivity of the antibody. This thesis is an exploratory study of the application of immunosorbent-SPE combined with CE for trace concentration of benzodiazepines. This research describes the immobilization and performance evaluation of an immunosorbent prepared by immobilizing a benzodiazepine-specific antibody on aminopropyl silica. The binding capacity of the immunosorbent, measured as µg of benzodiazepine/ gram of immunosorbent, was 39 ± 10. The long term stability of the prepared immunosorbent has been improved by capping the remaining aminopropyl groups by reaction with acetic anhydride. The capped immunosorbent retained its binding capacity after several uses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with similar to 270 mu m, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 mu L of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/mu L., (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of lambda-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.