233 resultados para soleus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sarco(endo)plasmic reticulum calcium ATPase (SERCA) is a transmembrane protein whose function is regulated by its immediate lipid environment (annulus). The composition of the annulus is currently unknown or it’s susceptibility to a high saturated fat diet (HSFD). Furthermore it is uncertain if HSFD can protect SERCA from thermal stress. The purpose of the study was to determine SERCA annular lipid composition, resulting impact of a HSFD, and in turn, influence on SERCA activity with and without thermal stress. The major findings were annular lipids were shorter and more saturated compared to whole homogenate and HSFD had no effect on annular lipid composition or SERCA activity with and without thermal stress. Both average chain length and unsaturation index were positively correlated with SERCA activity with and without thermal stress. These findings suggest that annular lipid composition is different than whole homogenate and its composition appears to be related to SERCA function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic Syndrome is a group of conditions related to obesity and physical inactivity. Little is known about the role of physical inactivity, in early stages of development, in the susceptibility to insulin resistant phenotype induced by high fat diet. Akt plays a key role in protein synthesis and glucose transport in skeletal muscle and has been regulated by muscle activity. The objective of present study was to determine the effect of early physical inactivity on muscle growth and susceptibility to acquire a diabetic phenotype and to assess its relationship with Akt expression. Forty Wistar male rats were distributed in two groups (standard group, Std) and movement restriction (RM). Between days 23 and 70 after birth, RM group was kept in small cages that did not allow them to perform relevant motor activity. From day 71 to 102 after birth, 10 rats of each group were fed with hyperlipidic diet (groups Std-DAG and RM-DAG). No differences were observed in total body weight although DAG increased epididymal fat pad weight. RM decreased significantly the soleus weight. Insulin-mediated glucose uptake was lower in RM-DAG group. Akt protein levels were lower in RM groups. Real time RT-PCR analysis showed that movement restriction decreased mRNA levels of AKT1 in soleus muscle, regardless of supplied diet. These findings suggest that early physical inactivity limits muscle`s growth and contributes to instauration of insulin resistant phenotype, which can be partly explained by dysregulation of Akt expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigate the effect of a single session of high-intensity contractions on expression of pleiotropic genes and, in particular, those genes associated with metabolism in soleus muscle from electrically stimulated (ES) and contralateral (CL) limbs. The right limbs of male Wistar rats were submitted to contractions by 200-ms trains of electrical stimulation at 100-Hz frequency with pulses of 0.1 ms (voltage 24 3 V) delivered each second for 1 hour. Soleus muscles were isolated 1 hour after contraction, and gene expression was analyzed by a macroarray technique (Atlas Toxicology 1.2 Array; Clontech Laboratories). Electrical stimulation increased expression in 92 genes (16% of the genes present in the membrane). Sixty-six genes were upregulated in both ES and CL soleus muscles, and expression of 26 genes was upregulated in the ES muscle only. The most altered genes were those related to stress response and metabolism. Electrical stimulation also raised expression of transcription factors, translation and posttranslational modification of proteins, ribosomal proteins, and intracellular transducers/effectors/modulators. The results indicate that a single session of electrical stimulation upregulated expression of genes related to metabolism and oxidative stress in soleus muscle from both ES and CL limbs. These findings may indicate an association with tissue hypertrophy and metabolic adaptations induced by physical exercise training not only in the ES but also in the CL non-stimulated muscle, suggesting a cross-education phenomenon. Muscle Nerve 40: 838-846, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study aimed to verify the physiological injury behavior by stretching the soleus muscle of rats, using a noninvasive experimental model. Twenty-four rats were used and divided into three groups of eight animals: control group (A), group that performed tetanus followed by electrical stimulation and a sudden dorsiflexion of the left paw performed by a device equipped with a mechanism of muscle soleus rapid stretching (B); and a group that only received the tetanus (C). Three days later, the animals were killed, and the soleus muscle was resected and divided into three segments. Morphological changes indicative of muscle damage appeared in all three segments of group B. In a lesser degree, similar changes were also detected in muscles subjected to only tetanus. This model was effective; reproducing an injury similar to what occurs in human sports injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extensor digitorum longus (EDL) and soleus (SOL) muscle fibres from albino rats submitted to experimental chronic alcoholism were evaluated in accordance with their metabolic and morphometric profiles. Twenty-seven male animals aged 4 months and weighing approximately 400 g were used. The animals were divided into three groups: control, isocaloric and alcoholic and sacrifices were carried out after 5, 10 and 15 months. The muscles were dissected, removed, cross-sectioned in a cryostat and submitted to the NADH (nicotinamide adenine dinucleotide) reaction. The SO (slow-twitch-oxidative), FG (fast-twitch-glycolytic) and FOG (fast-twitch-oxidative-glycolytic) muscle fibre types exhibited a polygonal, triangular or rounded shape and did not present noteworthy modifications in either muscles during the study. The cross-sectional areas of the fibres from the studied muscles did not present significant differences during the observations. Fibre area behaved similarly in the alcoholic animals up to the 10th month, i.e. it was decreased, as also observed in the other groups. At 15 months, however, all fibres were increased, with a predominance of FG fibres in the SOL muscle. Changes in fibre population were observed mainly in the SOL muscle of alcoholic animals: SO fibres were initially increased in number but decreased after the 10th month, and the opposite was observed for the population of FG fibres. FOG fibres increased linearly in number throughout the experiment. The statistical analysis showed nevertheless that the fibre population and cross-sectional area changes were not significant. In the alcoholic animals quantitative variations of muscle fibres were more evident in the SOL muscle, suggesting that the SOL muscle is more sensitive to the toxic action of ethanol. The results concerning the increased fibre diameter in alcoholic animals would be associated with muscle oedema induced directly or indirectly by the ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated whether veratrine (5 μl, 10 ng/kg) injected into the mouse extensor digitorum longus (EDL) (fast-twitch) and soleus (SOL) (slow-twitch) muscles provokes distinctive ultrastructural disturbances 15, 30 and 60 min later. The mitochondria in SOL were affected earlier (within 15 min) than in EDL. Swelling of the sarcoplasmic reticulum terminal cisternae was more marked in EDL than in SOL and caused distortion of sarcomeres so that fragmentation of myofilaments was more pronounced in EDL. Hypercontracted sarcomeres were seen mainly in SOL and veratrine caused infoldings of the sarcolemma only in this muscle. In both muscles, the T-tubules remained unaffected and by 60 min after veratrine most of the above alterations had reverted to normal. Pretreatment with tetrodotoxin prevented the alterations induced by veratrine. This suggests that most of the alterations resulted from the enhanced influx of Na+ into muscle fibers. These results emphasize the importance of considering the type of muscle when studying the action of myotoxic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Evidence of self-sustained muscle activation following a brief electrical stimulation has been reported in the literature for certain muscles. Objectives: This report shows that the foot muscle (Flexor Digitorum Brevis - FDB) shows a self-sustained increase in muscle activity during upright stance in some subjects following a train of stimuli to the tibial nerve. Methods: Healthy subjects were requested to stand upright and surface EMG electrodes were placed on the FDB, Soleus and Tibialis Anterior muscles. After background muscle activity (BGA) acquisition, a 50 Hz train of stimuli was applied to the tibial nerve at the popliteal fossa. The root mean square values (RMS) of the BGA and the post-stimulus muscle activation were computed. Results: There was a 13.8% average increase in the FDB muscle EMG amplitude with respect to BGA after the stimulation was turned off. The corresponding post-stimulus Soleus EMG activity decreased by an average of 9.2%. We hypothesize that the sustained contraction observed in the FDB following stimulus may be evidence of persistent inward currents (PIC) generated in FDB spinal motoneurons. The post-stimulus decrease in soleus activity may have occurred due to the action of inhibitory interneurons caused by the PICs, which were triggered by the stimulus train. Conclusions: These sustained post-stimulation changes in postural muscle activity, found in different levels in different subjects, may be part of a set of possible responses that contribute to overall postural control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Goncalves DA, Silveira WA, Lira EC, Gra a FA, Paula-Gomes S, Zanon NM, Kettelhut IC, Navegantes LC. Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 302: E123-E133, 2012. First published September 27, 2011; doi:10.1152/ajpendo.00188.2011.-Although it is well known that administration of the selective beta(2)-adrenergic agonist clenbuterol (CB) protects muscle following denervation (DEN), the underlying molecular mechanism remains unclear. We report that in vivo treatment with CB (3 mg/kg sc) for 3 days induces antiproteolytic effects in normal and denervated rat soleus muscle via distinct mechanisms. In normal soleus muscle, CB treatment stimulates protein synthesis, inhibits Ca(2+)-dependent proteolysis, and increases the levels of calpastatin protein. On the other hand, the administration of CB to DEN rats ameliorates the loss of muscle mass, enhances the rate of protein synthesis, attenuates hyperactivation of proteasomal and lysosomal proteolysis, and suppresses the transcription of the lysosomal protease cathepsin L and of atrogin-1/MAFbx and MuRF1, two ubiquitin (Ub) ligases involved in muscle atrophy. These effects were not associated with alterations in either IGF-I content or Akt phosphorylation levels. In isolated muscles, CB (10(-6) M) treatment significantly attenuated DEN-induced overall proteolysis and upregulation in the mRNA levels of the Ub ligases. Similar responses were observed in denervated muscles exposed to 6-BNZ-cAMP (500 mu M), a PKA activator. The in vitro addition of triciribine (10 mu M), a selective Akt inhibitor, did not block the inhibitory effects of CB on proteolysis and Ub ligase mRNA levels. These data indicate that short-term treatment with CB mitigates DEN-induced atrophy of the soleus muscle through the stimulation of protein synthesis, downregulation of cathepsin L and Ub ligases, and consequent inhibition of lysosomal and proteasomal activities and that these effects are independent of Akt and possibly mediated by the cAMP/PKA signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the redominant mechanisms. Methods: Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results: Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion: The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training.