980 resultados para solar PV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy efficiency and renewable energy use are two main priorities leading to industrial sustainability nowadays according to European Steel Technology Platform (ESTP). Modernization efforts can be done by industries to improve energy consumptions of the production lines. These days, steel making industrial applications are energy and emission intensive. It was estimated that over the past years, energy consumption and corresponding CO2 generation has increased steadily reaching approximately 338.15 parts per million in august 2010 [1]. These kinds of facts and statistics have introduced a lot of room for improvement in energy efficiency for industrial applications through modernization and use of renewable energy sources such as solar Photovoltaic Systems (PV).The purpose of this thesis work is to make a preliminary design and simulation of the solar photovoltaic system which would attempt to cover the energy demand of the initial part of the pickling line hydraulic system at the SSAB steel plant. For this purpose, the energy consumptions of this hydraulic system would be studied and evaluated and a general analysis of the hydraulic and control components performance would be done which would yield a proper set of guidelines contributing towards future energy savings. The results of the energy efficiency analysis showed that the initial part of the pickling line hydraulic system worked with a low efficiency of 3.3%. Results of general analysis showed that hydraulic accumulators of 650 liter size should be used by the initial part pickling line system in combination with a one pump delivery of 100 l/min. Based on this, one PV system can deliver energy to an AC motor-pump set covering 17.6% of total energy and another PV system can supply a DC hydraulic pump substituting 26.7% of the demand. The first system used 290 m2 area of the roof and was sized as 40 kWp, the second used 109 m2 and was sized as 15.2 kWp. It was concluded that the reason for the low efficiency was the oversized design of the system. Incremental modernization efforts could help to improve the hydraulic system energy efficiency and make the design of the solar photovoltaic system realistically possible. Two types of PV systems where analyzed in the thesis work. A method was found calculating the load simulation sequence based on the energy efficiency studies to help in the PV system simulations. Hydraulic accumulators integrated into the pickling line worked as energy storage when being charged by the PV system as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on using photovoltaic produced electricity to power air conditioners in a tropical climate. The study takes place in Surabaya, Indonesia at two different locations the classroom, located at the UBAYA campus and the home office, 10 km away. Indonesia has an average solar irradiation of about 4.8 kWh/m²/day (PWC Indonesia, 2013) which is for ideal conditions for these tests. At the home office, tests were conducted on different photovoltaic systems. A series of measuring devices recorded the performance of the 800 W PV system and the consumption of the 1.35 kW air conditioner (cooling capacity). To have an off grid system many of the components need to be oversized. The inverter has to be oversized to meet the startup load of the air conditioner, which can be 3 to 8 times the operating power (Rozenblat, 2013). High energy consumption of the air conditioner would require a large battery storage to provide one day of autonomy. The PV systems output must at least match the consumption of the air conditioner. A grid connect system provides a much better solution with the 800 W PV system providing 80 % of the 3.5 kWh load of the air conditioner, the other 20 % coming from the grid during periods of low irradiation. In this system the startup load is provided by the grid so the inverter does not need to be oversized. With the grid-connected system, the PV panel’s production does not need to match the consumption of the air conditioner, although a smaller PV array will mean a smaller percentage of the load will be covered by PV. Using the results from the home office tests and results from measurements made in the classroom. Two different PV systems (8 kW and 12 kW) were simulated to power both the current air conditioners (COP 2.78) and new air conditioners (COP 4.0). The payback period of the systems can vary greatly depending on if a feed in tariff is awarded or not. If the feed in tariff is awarded the best system is the 12 kW system, with a payback period of 4.3 years and a levelized cost of energy at -3,334 IDR/kWh. If the feed in tariff is not granted then the 8 kW system is the best choice with a lower payback period and lower levelized cost of energy than the 12 kW system under the same conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased concern about global warming coupled with the escalating demand of energy has driven the conventional power system to be more reliable one by integrating Renewable Energies (RE) in to grid. Over the recent years, integration of solar PV forming a gridconnected PV is considered as one of the most promisingtechnologies to the developed countries like Australia to meet the growing demand of energy. This rapid increase in grid connected photovoltaic (PV) systems has made the supply utilities concerned about the drastic effects that have to be considered on the distribution network in particular voltage fluctuations, harmonic distortions and the Power factor for sustainable power generation. However, irrespective of thefact that the utility grid can accommodate the variability of load or irregular solar irradiance, it is essential to study the impact of grid connected PV systems during higher penetration levels as the intermittent nature of solar PV adversely effects the grid characteristics in meeting the load demand. Hence, keeping this in track, this paper examines the grid-connected PV system considering a residential network of Geelong region (38◦.09' S and 144◦.21’ E) and explores the level of impacts considering summer load profile with a change in the level of integrations. Initially, a PV power system network model is developed in Matlab-Simulink environment and the simulations are carried out to explore the impacts of solar PV penetration at low voltage distribution network considering power quality (PQ) issues such as voltage fluctuations, harmonics distortion at different load conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today’s power system network has become more complex and it has more responsibilities and challenges to provide secure, reliable and quality energysupply to the communities. A small entity of electrical network known as Microgrid (MG) is more popular nowadays to enhance reliablity and secure level of energy supply, in case of any energy crisis in the utility network. The MG can also provide clean energy supply by integrating renewable energy sources effectively. TheMG with small scale solar photovoltaic (PV) power system is more suitable to provide reliable and clean energy supply for remote or urban communities in residential level. This paper presents the basic analysis study of stand-alone solar photovoltaic (PV) MG power system which has been developed with the aid of Matlab - Simulink software, on the basis of residential load profile and solar exposure level in a particular area of Geelong, Victoria State. The simulation result depicts the control behavior of MG power system with optimum sizing of PV (4.385 kW)and battery storage (480Ah/48V) facility, fulfills daily energy needs in residential load level. This study provides a good platform to develop an effective and reliable stand-alone MG power system for the remote communities in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article analyses the long-term performance of collective off-grid photovoltaic (PV) systems in rural areas. The use of collective PV systems for the electrification of small medium-size villages in developing countries has increased in the recent years. They are basically set up as stand-alone installations (diesel hybrid or pure PV) with no connection with other electrical grids. Their particular conditions (isolated) and usual installation places (far from commercial/industrial centers) require an autonomous and reliable technology. Different but related factors affect their performance and the energy supply; some of them are strictly technical but others depend on external issues like the solar energy resource and users’ energy and power consumption. The work presented is based on field operation of twelve collective PV installations supplying the electricity to off-grid villages located in the province of Jujuy, Argentina. Five of them have PV generators as unique power source while other seven include the support of diesel groups. Load demand evolution, energy productivity and fuel consumption are analyzed. Besides, energy generation strategies (PV/diesel) are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric vehicles (EVs) provide a feasible solution to reducing greenhouse gas emissions and thus become a hot topic for research and development. Switched reluctance motors (SRMs) are one of promised motors for EV applications. In order to extend the EVs’ driving miles, the use of photovoltaic (PV) panels on the vehicle helps decrease the reliance on vehicle batteries. Based on phase winding characteristics of SRMs, a tri-port converter is proposed in this paper to control the energy flow between the PV panel, battery and SRM. Six operating modes are presented, four of which are developed for driving and two for standstill on-board charging. In the driving modes, the energy decoupling control for maximum power point tracking (MPPT) of the PV panel and speed control of the SRM are realized. In the standstill charging modes, a grid-connected charging topology is developed without a need for external hardware. When the PV panel directly charges the battery, a multi-section charging control strategy is used to optimize energy utilization. Simulation results based on Matlab/Simulink and experiments prove the effectiveness of the proposed tri-port converter, which has potential economic implications to improve the market acceptance of EVs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microgrid (MG) power system with Distributed Generation (DG) plays an important role to provide reliable, secure, and low carbon emission energy supply for communities, in case of any failure or disturbance of energy supply from the main grid. At the same time, DG also contributes to several technical issues in the MG distribution network. Power quality (PQ) issues are one of the main technical challenges when integrating Renewable Energy (RE) sources in MG network. In this paper, the PQ issues like; power variation, voltage deviation, and Total Harmonic Distortion (THD) have been addressed by an impact analysis study on a typical solar PV MG power system in both on-grid and off-grid mode of operation. Analysis results from the study will be helpful in developing an independent MG power system with improved PQ conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integration of solar PV and wind in to the distribution network is one of the most promising challenges of the modern power system networks to meet the growing demand of energy. Analysis of the effects of solar and wind intermittencies in the network are vital to maintain the power quality. Keeping this in view, this research paper focuses on impact analysis study of a typical power network with hybrid generation: solar PV and wind integration to quantify the level of impacts like power variation and voltage variation in the network through load flow analysis. Initially, a typical network model is developed using PSS-SINCAL and load profile analysis has been carried out based on the typical daily load profile and wind/solar profile to verify the power and voltage variations extensively in the network considering different scenarios. Results of this research analysis can be used as guidelines for utility grid to provide regulated and improved quality of energy supply by implementing appropriate planning of generation reserve and other control measures in the network

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Awareness for the need of sustainable and eco-friendly mobility has been increasing and various innovations are taking place in this regard. A study was carried out to assess the feasibility of installing solar photovoltaic (PV) modules atop train coaches. Most long-distance trains having LHB coaches do not have self-generating systems, thus making power cars mandatory to supply the required power for lighting loads. Feasibility of supplementing diesel generator sets with power from solar PV modules installed on coach rooftops has been reported in this communication. Not only is there a conservation of fuel, there is also a significant reduction in CO2 emissions. This work has shown that the area available on coach rooftops is more than sufficient to generate the required power, during sunlight hours, for the electrical loads of a non-A/C coach even during winter. All calculations were done keeping a standard route as the reference. Taking the cost of diesel to be Rs 66/litre, it was estimated that there will be annual savings of Rs 5,900,000 corresponding to 90,800 litres diesel per rake per year by implementing this scheme. The installation cost of solar modules would be recovered within 2-3 years. Implementation of this scheme would also amount to an annual reduction of 239 tonnes of CO2 emissions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neste trabalho apresenta-se o modelo de um controlador baseado em Lógica Fuzzy para um sistema de energia baseado em fonte renovável solar fotovoltaica (photovoltaic - PV) multi-string em operação isolada, para o aproveitamento da máxima potência desta fonte. O sistema é composto por painéis solares, conversor CC-CC tipo elevador de tensão (boost), armazenamento por banco de baterias, inversor trifásico e carga trifásica variável. O sistema fotovoltaico foi modelado no MATLAB/Simulink de forma a representar a curva característica V-I do módulo PV, e que é baseado nos dados disponíveis em data-sheets de painéis fotovoltaicos comerciais. Outros estudos de natureza elétrica tais como o cálculo dos valores eficazes das correntes no conversor CC-CC, para avaliação das perdas, indispensáveis para o dimensionamento de componentes eletrônicos, foram realizados. O método tradicional Perturb and Observe de rastreamento do ponto de máxima potência (Maximum Power Point Tracking MPPT) de painéis foi testado e comparado com métodos que usam a Lógica Fuzzy. Devido ao seu desempenho, foi adotado o método Fuzzy que realiza o MPPT por inferência do ciclo de trabalho de um modulador por largura de pulso (Pulse Width Modulation - PWM) através da variação da potência pela variação da corrente do painel solar. O modelo Fuzzy adotado neste trabalho foi testado com sucesso. Os resultados mostraram que ele pode ser robusto e atende à aplicação proposta. Segundo alguns testes realizados, este controlador pode realizar o MPPT de um sistema PV na configuração multi-string onde alguns arranjos fotovoltaicos são usados. Inclusive, este controle pode ser facilmente adaptado para realizar o MPPT de outras fontes de energia baseados no mesmo princípio de controle, como é o caso do aerogerador.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Presenting a complete guide for the planning, design and implementation of solar PV systems for off-grid applications, this book features analysis based on the authors’ own laboratory testing as well as their in the field experiences. Incorporating the latest developments in smart-digital and control technologies into the design criteria of the PV system, this book will also focus on how to integrate newer smart design approaches and techniques for improving the efficiency, reliability and flexibility of the entire system. The design and implementation of India’s first-of its-kind Smart Mini-Grid system (SMG) at TERI premises, which involves the integration of multiple renewable energy resources (including solar PV) through smart controllers for managing the load intelligently and effectively is presented as a key case study. Maximizing reader insights into the performance of different components of solar PV systems under different operating conditions, the book will be of interest to graduate students, researchers, PV designers, planners, and practitioners working in the area of solar PV design, implementation and assessment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This Thesis project is a part of the all-round automation of production of concentrating solar PV/T systems Absolicon X10. ABSOLICON Solar Concentrator AB has been invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate the shape of concentrating parabolic reflectors.On the basis of the requirements of the company administration and needs of real production process the operation conditions for the Laser testing rig were formulated. The basic concept to use laser radiation was defined.At the first step, the complex design of the whole system was made and division on the parts was defined. After the preliminary conducted simulations the function and operation conditions of the all parts were formulated.At the next steps, the detailed design of all the parts was conducted. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Laser-testing rig were assembled and tested. Software part, which controls the Laser-testing rig work, was created on the LabVIEW basis. To tune and test software part the special simulator was designed and assembled.When all parts were assembled in the complete system, the Laser-testing rig was tested, calibrated and tuned.In the workshop of Absolicon AB, the trial measurements were conducted and Laser-testing rig was installed in the production line at the plant in Soleftea.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The advancement in solar photovoltaic (PV) technology, the cost and efficiency of PVs have encouraged users worldwide to adopt more and more PVs as it is free from greenhouse gas emissions and unlimited in nature. Integration of roof-top solar PV systems is currently emerging rapidly in Australia as the governments are giving attractive incentives and encouraging households to build a sustainable climate-friendly society for the future. The key major barriers to the integration of roof-top solar PV systems are the uncertainties in the performance of the low voltage distribution network due to the intermittent nature of solar PV sources. In this paper, a model was developed to investigate the potential technical impacts of integrating roof-top solar PV systems into the low voltage distribution network in a subtropical climate. The results show that integration of roof-top solar PV in the customer premises causes uncertainties such as voltage fluctuations, phase unbalance, distribution transformer overloading, reactive power compensation, and harmonic injections that detract the overall power quality of the typical distribution network. © 2014 AIP Publishing LLC.