990 resultados para soil type
Resumo:
Selostus: Lajikkeen, typpilannoitustason ja maalajin vaikutus ohran ruokinnalliseen arvoon lihasioilla
Resumo:
Thesis (M.S. in Agr.)--Cornell Univ., 1917.
Resumo:
Edaphic factors affect the quality of onions (Allium cepa). Two experiments were carried out in the field and glasshouse to investigate the effects of N (field: 0, 120 kg ha(-1); glasshouse: 0, 108 kg ha(-1)), S (field: 0, 20 kg ha(-1); glasshouse: 0, 4.35 kg ha(-1)) and soil type (clay, sandy loam) on onion quality. A conducting polymer sensor electronic nose (E-nose) was used to classify onion headspace volatiles. Relative changes in the E-nose sensor resistance ratio (%dR/R) were reduced following N and S fertilisation. A 2D Principal Component Analysis (PCA) of the E-nose data sets accounted for c. 100% of the variations in onion headspace volatiles in both experiments. For the field experiment, E-nose data set clusters for headspace volatiles for no N-added onions overlapped (D-2 = 1.0) irrespective of S treatment. Headspace volatiles of N-fertilised onions for the glasshouse sandy loam also overlapped (D-2 = 1.1) irrespective of S treatment as compared with distinct separations among clusters for the clay soil. N fertilisation significantly (P < 0.01) reduced onion bulb pyruvic acid concentration (flavour) in both experiments. S fertilisation increased pyruvic acid concentration significantly (P < 0.01) in the glasshouse experiment, especially for the clay soil, but had no effect on pyruvic acid concentration in the field. N and S fertilisation significantly (P < 0.01) increased lachrymatory potency (pungency), but reduced total soluble solids (TSS) content in the field experiment. In the glasshouse experiment, N and S had no effect on TSS. TSS content was increased on the clay by 1.2-fold as compared with the sandy loam. Onion tissue N:water-soluble SO42- ratios of between five and eight were associated with greater %dR/R and pyruvic acid concentration values. N did not affect inner bulb tissue microbial load. In contrast, S fertilisation reduced inner bulb tissue microbial load by 80% in the field experiment and between 27% (sandy loam) and 92% (clay) in the glasshouse experiment. Overall, onion bulb quality discriminated by the E-nose responded to N, S and soil type treatments, and reflected their interactions. However, the conventional analytical and sensory measures of onion quality did not correlate with %dR/R.
Resumo:
Genotype, sulphur (S) nutrition and soil-type effects on spring onion quality were assessed using a 32-conducting polymer sensor E-nose. Relative changes in sensor resistance ratio (% dR/R) varied among eight spring onion genotypes. The % dR/R was reduced by S application in four of the eight genotypes. For the other four genotypes, S application gave no change in % dR/R in three, and increased % dR/R in the other. E-nose classification of headspace volatiles by a two-dimensional principal component analysis (PCA) plot for spring onion genotypes differed for S fertilisation vs. no S fertilisation. Headspace volatiles data set clusters for cv. 'White Lisbon' grown on clay or on sandy loam overlapped when 2.9 [Mahalanobis distance value (D2) = 1.6], or 5.8-(D2 = 0.3) kg S ha-1 was added. In contrast, clear separation (D2 = 7.5) was recorded for headspace volatile clusters for 0 kg S hd-1 on clay vs. sandy loam. Addition of 5.8 kg S ha-1 increased pyruvic acid content (mmole g-1 fresh weight) by 1.7-fold on average across the eight genotypes. However, increased S from 2.9 to 5.8 kg ha-1 did not significantly (P > 0.05) influence % dR/R, % dry matter (DM) or total soluble solids (TSS) contents, but significantly (P < 0.05) increased pyruvic acid content. TSS was significantly (P < 0.05) reduced by S addition, while % DM was unaffected. In conclusion, the 32-conducting polymer E-nose discerned differences in spring onion quality that were attributable to genotype and to variations in growing conditions as shown by the significant (P < 0.05) interaction effects for % dR/R.
Resumo:
This study examined the effect of soil type on burrowing behaviour and cocoon formation during aestivation in the green-striped burrowing frog, Cyclorana alboguttata (Gunther, 1867). Given a choice, frogs always chose to burrow in wet sand in preference to wet clay. Frogs buried themselves faster and dug deeper burrows in sandy soil. However, under my laboratory conditions, there was little difference in the pattern of soil drying between the two soil types. Frogs in both sand and clay soil experienced hydrating conditions for the first 3amonths and dehydrating conditions for the last 3amonths of the 6-month aestivation period, and cocoons were not formed until after 3amonths of aestivation. After 6amonths, there were more layers in the cocoons of frogs aestivating in sand than those aestivating in clay. Frogs were able to absorb water from sandy soil with water potentials greater than -400akPa, but lost water when placed on sand with a water potential of -1000akPa.
Resumo:
Agricultural management practices that promote net carbon (C) accumulation in the soil have been considered as an important potential mitigation option to combat global warming. The change in the sugarcane harvesting system, to one which incorporates C into the soil from crop residues, is the focus of this work. The main objective was to assess and discuss the changes in soil organic C stocks caused by the conversion of burnt to unburnt sugarcane harvesting systems in Brazil, when considering the main soils and climates associated with this crop. For this purpose, a dataset was obtained from a literature review of soils under sugarcane in Brazil. Although not necessarily from experimental studies, only paired comparisons were examined, and for each site the dominant soil type, topography and climate were similar. The results show a mean annual C accumulation rate of 1.5 Mg ha-1 year-1 for the surface to 30-cm depth (0.73 and 2.04 Mg ha-1 year-1 for sandy and clay soils, respectively) caused by the conversion from a burnt to an unburnt sugarcane harvesting system. The findings suggest that soil should be included in future studies related to life cycle assessment and C footprint of Brazilian sugarcane ethanol.
Resumo:
1. Little is known about the role of deep roots in the nutrition of forest trees and their ability to provide a safety-net service taking up nutrients leached from the topsoil. 2. To address this issue, we studied the potential uptake of N, K and Ca by Eucalyptus grandis trees (6 years of age - 25 m mean height), in Brazil, as a function of soil depth, texture and water content. We injected NO(3)(-)- (15)N, Rb(+) (analogue of K(+)) and Sr(2+) (analogue of Ca(2+)) tracers simultaneously in a solution through plastic tubes at 10, 50, 150 and 300 cm in depth in a sandy and a clayey Ferralsol soil. A complete randomized design was set up with three replicates of paired trees per injection depth and soil type. Recently expanded leaves were sampled at various times after tracer injection in the summer, and the experiment was repeated in the winter. Soil water contents were continuously monitored at the different depths in the two soils. 3. Determination of foliar Rb and Sr concentrations and (15)N atom % made it possible to estimate the relative uptake potential (RUP) of tracer injections from the four soil depths and the specific RUP (SRUP), defined as RUP, per unit of fine root length density in the corresponding soil layer. 4. The highest tracer uptake rates were found in the topsoil, but contrasting RUP distributions were observed for the three tracers. Whilst the RUP was higher for NO(3)(-)- (15)N than for Rb(+) and Sr(2+) in the upper 50 cm of soil, the highest SRUP values for Sr(2+) and Rb(+) were found at a depth of 300 cm in the sandy soil, as well as in the clayey soil when gravitational solutions reached that depth. 5. Our results suggest that the fine roots of E. grandis trees exhibit contrasting potential uptake rates with depth depending on the nutrient. This functional specialization of roots might contribute to the high growth rates of E. grandis trees, efficiently providing the large amounts of nutrients required throughout the development of these fast-growing plantations.
Resumo:
This study aimed to evaluate adult emergence and duration of the pupal stage of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), and emergence of the fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead), under different moisture conditions in four soil types, using soil water matric potential Pupal stage duration in C capitata was influenced differently for males and females In females, only soil type affected pupal stage duration, which was longer in a clay soil In males, pupal stage duration was individually influenced by moisture and soil type, with a reduction in pupal stage duration in a heavy clay soil and in a sandy clay, with longer duration in the clay soil As allude potential decreased, duration of the pupal stage of C capitata males increased, regardless of soil type C capitata emergence was affected by moisture, regardless of soil type, and was higher in drier soils The emergence of D longicaudata adults was individually influenced by soil type and moisture factors, and the number of emerged D longicaudata adults was three times higher in sandy loam and lower in a heavy clay soil Always, the number of emerged adults was higher at higher moisture conditions C capitata and D longicaudata pupal development was affected by moisture and soil type, which may facilitate pest sampling and allow release areas for the parasitoid to be defined under field conditions.
Resumo:
The principle of using induction rules based on spatial environmental data to model a soil map has previously been demonstrated Whilst the general pattern of classes of large spatial extent and those with close association with geology were delineated small classes and the detailed spatial pattern of the map were less well rendered Here we examine several strategies to improve the quality of the soil map models generated by rule induction Terrain attributes that are better suited to landscape description at a resolution of 250 m are introduced as predictors of soil type A map sampling strategy is developed Classification error is reduced by using boosting rather than cross validation to improve the model Further the benefit of incorporating the local spatial context for each environmental variable into the rule induction is examined The best model was achieved by sampling in proportion to the spatial extent of the mapped classes boosting the decision trees and using spatial contextual information extracted from the environmental variables.
Resumo:
Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.
Resumo:
This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%.
Resumo:
The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.