991 resultados para soil total digestion
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Highly weathered soils represent about 3 billion ha of the tropical region. Oxisols represent about 60% of the Brazilian territory (more than 5 million km 2), in areas of great agricultural importance. Soil organic carbon (SOC) can be responsible for more than 80% of the cation exchange capacity (CEC) of highly weathered soils, such as Oxisols and Ultisols. The objective of this study was to estimate the contribution of the SOC to the CEC of Brazilian soils from different orders. Surface samples (0.0 to 0.2 m) of 30 uncultivated soils (13 Oxisols, 6 Ultisols, 5 Alfisols, 3 Entisols, I Histosol, 1 Inceptisol. and I Molisol), under native forests and from reforestation sites from Sao Paulo State, Brazil, were collected in order to obtain a large variation of (electro)chemical, physical, and mineralogical soil attributes. Total content of SOC was quantified by titulometric and colorimetric methods. Effective cation exchange capacity (ECEC) was obtained by two methods: the indirect method-summation-estimated the ECECi from the sum of basic cations (Ca+ Mg+ K+ Na) and exchangeable Al; and the direct ECECd obtained by the compulsive exchange method, using unbuffered BaCl2 solution. The contribution of SOC to the soil CEC was estimated by the Bennema statistical method. The amount of SOC var ied from 6.6 g kg(-1) to 213.4 g kg(-1). while clay contents varied from 40 g kg(-1) to 716 g kg(-1). Soil organic carbon contents were strongly associated to the clay contents, suggesting that clay content was the primary variable in controling the variability of SOC contents in the samples. Cation exchange capacity varied from 7.0 mmol(c) kg(-1) to 137.8 mmol(c) kg(-1) and had a positive Correlation with SOC. The mean contribution (per grain) of the SOC (1.64 mmol(c)) for the soil CEC was more than 44 times higher than the contribution of the clay fraction (0.04 mmol(c),). A regression model that considered the SOC content as the only significant variable explained 60% of the variation in the soil total CEC. The importance of SOC was related to soil pedogenetic process, since its contribution to the soil CEC was more evident in Oxisols with predominance of Fe and Al (oxihydr)oxides in the mineral fraction or in Ultisols, that presented illuviated clay. The influence of SOC in the sign and in the magnitude of the net charge of soils reinforce the importance of agricultural management systems that preserve high levels of SOC, in order to improve their sustainability.
Resumo:
The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.
Resumo:
Successive applications of liquid swine waste to the soil can increase the contents of total organic carbon and nutrients and change acidity-related soil chemical properties. However, little information is available on the effects of swine waste application in solid form, as of swine deep-litter. The objective of this study was to evaluate alterations of organic carbon and acidity-related properties of a soil after eight years of pig slurry and deep-litter application. In the eighth year of a field experiment established in Braço do Norte, Santa Catarina (SC) on a sandy Typic Hapludalf samples were taken (layers 0-2.5; 2.5-5; 5-10; 10-15; 15-20 and 20-30 cm) from unfertilized plots and plots with pig slurry or deep-litter applications, providing the simple or double rate of N requirement of Zea mays and Avena strigosa in rotation. Soil total organic carbon, water pH, exchangeable Al, Ca and Mg, and cation exchange capacity (CECeffective and CECpH7.0), H+Al, base saturation, and aluminum saturation were measured. The application of pig slurry and deep-litter for eight years increased total organic carbon and CEC in all soil layers. The pig slurry and deep-litter applications reduced active acidity and aluminum saturation and increased base saturation down to a depth of 30 cm. Eight years of pig slurry application did not affect soil acidity.
Characterization of soil chemical properties of strawberry fields using principal component analysis
Resumo:
One of the largest strawberry-producing municipalities of Rio Grande do Sul (RS) is Turuçu, in the South of the State. The strawberry production system adopted by farmers is similar to that used in other regions in Brazil and in the world. The main difference is related to the soil management, which can change the soil chemical properties during the strawberry cycle. This study had the objective of assessing the spatial and temporal distribution of soil fertility parameters using principal component analysis (PCA). Soil sampling was based on topography, dividing the field in three thirds: upper, middle and lower. From each of these thirds, five soil samples were randomly collected in the 0-0.20 m layer, to form a composite sample for each third. Four samples were taken during the strawberry cycle and the following properties were determined: soil organic matter (OM), soil total nitrogen (N), available phosphorus (P) and potassium (K), exchangeable calcium (Ca) and magnesium (Mg), soil pH (pH), cation exchange capacity (CEC) at pH 7.0, soil base (V%) and soil aluminum saturation(m%). No spatial variation was observed for any of the studied soil fertility parameters in the strawberry fields and temporal variation was only detected for available K. Phosphorus and K contents were always high or very high from the beginning of the strawberry cycle, while pH values ranged from very low to very high. Principal component analysis allowed the clustering of all strawberry fields based on variables related to soil acidity and organic matter content.
Resumo:
Soils of the tropics are prone to a decrease in quality after conversion from native forest (FO) to a conventional tillage system (CT). However, the adoption of no-tillage (NT) and complex crop rotations may improve soil structural quality. Thus, the aim of this study was to evaluate the physical properties of an Oxisol under FO, CT, and three summer crop sequences in NT: continuous corn (NTcc), continuous soybean (NTcs), and a soybean/corn rotation (NTscr). Both NT and CT decreased soil organic carbon (SOC) content, SOC stock, water stable aggregates (WSA), geometric mean diameter (GMD), soil total porosity (TP), macroporosity (MA), and the least limiting water range (LLWR). However they increased soil bulk density (BD) and tensile strength (TS) of the aggregates when compared to soil under FO. Soil under NT had higher WSA, GMD, BD, TS and microporosty, but lower TP and MA than soil under CT. Soil under FO did not attain critical values for the LLWR, but the lower limit of the LLWR in soils under CT and NT was resistance to penetration (RP) for all values of BD, while the upper limit of field capacity was air-filled porosity for BD values greater than 1.46 (CT), 1.40 (NTscr), 1.42 (NTcc), and 1.41 (NTcs) kg dm-3. Soil under NTcc and NTcs decreased RP even with the increase in BD because of the formation of biopores. Furthermore, higher critical BD was verified under NTcc (1.62 kg dm-3) and NTcs (1.57 kg dm-3) compared to NTscr and CT (1.53 kg dm-3).
Resumo:
ABSTRACT Investigations into water potentials in the soil-plant system are of great relevance in environments with abiotic stresses, such as salinity and drought. An experiment was developed using bell pepper in a Neossolo Flúvico (Fluvent) irrigated with water of six levels of electrical conductivity (0, 1, 3, 5, 7 and 9 dS m-1) by using exclusively NaCl and by simulating the actual condition (using a mixture of salts). The treatments were arranged in a randomized block design, in a 6 × 2 factorial arrangement, with four replicates. Soil matric (Ψm) and osmotic (Ψo) potentials were determined 70 days after transplanting (DAT). Soil total potential was considered as the sum of Ψm and Ψo. Leaf water (obtained with the Scholander Chamber) and osmotic potentials were determined before sunrise (predawn) and at noon at 42 and 70 DAT. There were no significant differences between the salt sources used in the irrigation water for soil and plant water potentials. The supply of salts to the soil through irrigation water was the main factor responsible for the decrease in Ψo in the soil and in bell pepper leaves. The total potential of bell pepper at predawn reached values of -1.30 and -1.33 MPa at 42 and 70 DAT, respectively, when water of 9 dS m-1 was used in the irrigation. The total potential at noon reached -2.19 MPa. The soil subjected to the most saline treatment reached a water potential of -1.20 MPa at 70 DAT. There was no predawn equilibrium between the total water potentials of the soil and the plant, indicating that soil potential cannot be considered similar to that of the plant. The determination of the osmotic potential in the soil solution should not be neglected in saline soils, since it has strong influence on the calculation of the total potential.
Resumo:
ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C) stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis) at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes) – BRAQ, pearl millet (Pennisetum glaucum) – MIL, jack bean (Canavalia ensiformis) – JB, blend (50 % each) of jack bean + millet (JB/MIL), and spontaneous vegetation (SPV). The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC) content, light fraction (LF), and the particulate organic C (POC), and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1) in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.
Resumo:
Advancing maturity of forage maize is associated with increases in the proportion of dry matter (DM) and starch and decreases in the proportions of structural carbohydrates in the ensiled crop. Three maize silages (286 (low, L), 329 (medium, M) and 379 (high, H) g DM per kg fresh weight) plus a concentrate formulated to give isonitrogenous intakes were offered to Holstein-Friesian steers fitted with a cannula in the dorsal sac of the rumen and a 'T' piece cannula in the proximal duodenum in an experiment with a cross-over design that allowed four collection periods. Nutrient flow to the duodenum was estimated using chromium-EDTA. Steers consumed approximately 0(.)6 kg DM per day less of diet L compared with the other two diets (P=0(.)026), resulting in less DM being digested (P=0(.)005) but digestibility did not differ between diets. Similar results were obtained for organic matter. There were no differences between diets in the intake or digestibility of neutral-detergent fibre. Intake, duodenal flow and faecal output of starch were greater for steers offered diets M and H compared with those given diet L (P < 0(.)05). In all diets rumen digestion contributed to over 90% of total digestion of starch, although rumen digestibility declined significantly with advancing maize maturity (P=0(.)002). Molar proportions of acetic acid were higher in diet H (P < 0(.)05) whilst proportions of propionic acid and n-butyric acid were higher in diets M and L. There were no significant differences between diets in mean rumen pH or ammonia concentrations. Mean circulating concentrations of insulin were higher (P=0(.)009) in cattle given diets L and M compared with diet H. There were no differences between diets in the mean circulating concentration of growth hormone, or the frequency, amplitude and duration of growth hormone pulses, or the mean circulating concentrations of IGF-1. Changes in forage composition that accompany advancing maize maturity affect overall silage digestion and circulating concentrations of insulin.
Resumo:
Várias toneladas de rejeito de manganês contendo arsênio, gerado por uma empresa de mineração, foram utilizadas como aterro de ruas da cidade de Santana-AP. A possibilidade de exposição das pessoas residentes nessas localidades levou ao estudo de quantificação de arsênio total nos solos. Após a digestão, os teores de arsênio foram quantificados por espectrofotometria de absorção molecular usando um sistema automático de geração de hidretos (HG-MAS), diciclohexilamina/CHCl3 como solvente do dietilditiocarbamato de prata (SDDC) e KBH4 como redutor. O método apresentou bons resultados com sensibilidade (ε) de 1,10 104 L.mol-1.cm-1, estabilidade de 2,96% e outras vantagens em relação ao método oficial. O método foi aplicado em amostras de referência de solo com recuperação de 98,82 % (N=10). As análises de solos mostraram que do total de amostras analisadas 94,74 % apresentaram concentração de arsênio acima do valor editado pela CETESB para solo residencial (50 mg.kg-1) com valor médio de 682,96 mg.kg-1, variando de 48,08 mg.kg-1 a 1.713,00 mg.kg-1 que comprova a contaminação do solo pelo arsênio.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Indicators of soil quality associated with N-cycling were assessed under different land-use systems (native forest NAT, reforestation with Araucaria angustifolia or Pinus taeda and agricultural use AGR) to appraise the effects on the soil potential for N supply. The soil total N ranged from 2 to 4 g/kg (AGR and NAT, respectively), and the microbial biomass N ranged from 80 to 250 mg/kg, being higher in NAT and A. angustifolia, and lower in P. taeda and AGR sites. Activities of asparaginase (ca. 50200 mg NH4+-N/kg per h), glutaminase (ca. 200800 mg NH4+-N/kg per h) and urease (ca. 80200 mg NH4+-N/kg/h) were also more intense in the NAT and A. angustifolia-reforested soils, indicating greater capacity for N mineralization. The NAT and AGR soils showed the highest and the lowest ammonification rate, respectively (ca. 1 and 0.4 mg NH4+-N/kg per day), but the inverse for nitrification rate (ca. 12 and 26%), indicating a low capacity for N supply, in addition to higher risks of N losses in the AGR soil. A multivariate analysis indicated more similarity between NAT and A. angustifolia-reforested sites, whilst the AGR soil was different and associated with a higher nitrification rate. In general, reforestation with the native species A. angustifolia had less impact than reforestation with the exogenous species P. taeda, considering the soil capacity for N supply. However, AGR use caused more changes, generally decrease in indicators of N-cycling, showing a negative soil management effect on the sustainability of this agroecosystem.
Resumo:
This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C/m**2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C/m**2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C/m**2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.
Resumo:
Presumed synergistic effect of combined amendment of crude oil spiked soil with oil palm bunch ash and sawdust was carried out in a laboratory experiment. Two kilogram (2 kg) of sandy soil was placed in each of five plastic vessels labeled TA, TB, TC, TD and TE. TA was left in its natural state while the others were each polluted with 6.7% v/w of crude oil. TB was not given any remediation amendment. TC and TD were each amended with 13.3% of oil palm bunch ash and sawdust respectively while TE was amended with 13.3% each of oil palm bunch ash and sawdust. The setups were replicated five times and watered twice weekly. Results showed that soil pH increased from 8.7±0.04 to 10.5±0.06, 5.3±0.01 to 8.5±0.04 and 5.6±0.18 to 11.5±0.15 for TC, TD and TE respectively. Percentage total petroleum hydrocarbon contents reduced by 65% for TC, TD and 52% for TE. Total organic carbon increased from 7.6±0.7 to 8.5±0.5%%, reduced from 4.0±0.1% to 3.7±0.3% and from 4.1±0.1% to 2.2±1.0% TC, TD and TE respectively. Total nitrogen increased from 0.66±0.1 to 0.69±0.0% for TC, remained nearly the same for TD and reduced from 0.4±0.0 to 0.2±0.0% for TE while average phosphorus increased from 0.4±0.0 to 23.0±4.2 mg/kg, 0.3±0.0 to 1.8±0.4 mg/kg and from 0.2±1.0 mg/kg to 52.6±4.6 mg/kg for TC, TD and TE respectively. Conclusively, combined amendment with oil palm bunch ash and sawdust did not induce synergism in soil total petroleum hydrocarbon content reduction.
Resumo:
ABSTRACT : During my SNSF-funded Ph.D. thesis project, I studied the evolution of redox conditions and organic-carbon preservation in the western Tethyan realm during three major positive excursions in the Cretaceous δ13C record, corresponding to the Valanginian, Early Aptian and Late Cenomanian. These periods were characterized by important global environmental and climate change, which was associated with perturbations in the carbon cycle. For the period of the Valanginian δ13C excursion, total organic carbon (TOC) contents and the quality of preserved organic matter are typical of oxic pelagic settings in the western Tethys. This is confirmed by the absence of major excursions in the stratigraphic distribution of RSTE during the δ13C shift. Published TOC data from other parts of the Valanginian oceans indicate that dys- to anaerobic zones were restricted to marginal seas within the Atlantic and Southern Ocean, and to the Pacific. Phosphorus (P) and mineralogical contents suggest a stepwise climatic evolution during the Valanginian, with a humid and warm climate prior to the δ13C shift leading to an increase in continental runoff. During the δ13C shift, a decrease in detrital input and P contents suggests a change in the climate towards more and conditions. During the early Aptian oceanic anoxic event (OAE 1a), a general increase followed by a rapid decrease in P contents suggests enhanced nutrient input at the beginning of OAE 1a. The return to lower values during OAE 1 a, associated with an increase in RSTE contents, may have been related to the weakened capacity to retain P in the sedimentary reservoir due to bottom-water oxygen depletion. In basinal settings, the RSTE distribution indicates well-developed anoxic conditions during OAE la, whereas in the shallower-water environments, conditions were oxic to suboxic, rather than anoxic. Furthermore, in the deeper part of the Tethys, two distinct enrichments have been observed, indicating fluctuations in the intensity of water column anoxia during the δ73C excursion. We also studied the effect of the end-Cenomanian oceanic anoxic event (OAE 2) on an expanded section in the Chrummflueschlucht (E of Euthal, Ct Switzerland). The goal here was to identify paleoceanographic and paleoenvironmental conditions during OAE 2 in this part of the northern Tethyan margin. The results show that this section is one of the most complete sections for the Cenomanian-Turonian boundary interval known from the Helvetic realm, despite a small hiatus between sediments corresponding to peaks 1 and 2 in the δ13C record. The evolution of P contents points to an increase in the input of this nutrient at the onset of OAE 2. The trends in RSTE contents show, however, that this part of the Helvetic realm was not affected by a strong depletion in oxygen conditions during OAE 2, despite its hemipelagic position. A further goal of this project was to submit the samples to a total extraction method (a combined HF/HNO3/HCI acid digestion) and compare the results obtained by the partial HNO3 acid extraction in order to standardize the analytical prócedures in the extraction of RSTE. The obtained results for samples of OAE 1 a suggest that RSTE trends using the partial HNO3 digestion are very comparable to those obtained by the total digestion method and subsequently normalized with regards to AI contents. RÉSUMÉ : Durant ce projet de thèse, financé par le Swiss National Science Funding (SNSF), j'ai étudié l'évolution des conditions redox et de la préservation de carbone organique dans le domnaine ouesttéthysien pendant trois excursions majeures du δ13C au Crétacé correspondant au Valanginien, à l'Aptien inférieur et à la limite Cénomanien-Turonien. Ces périodes sont caractérisées par des changements climatiques et environnementaux globaux associés à des perturbations dans le cylce du carbone. Pour L'excursion positive en δ13C du Valanginien, les analyses du carbone organique total (COT) et les observations palynologiques du domaine téthysien ont présenté des indications d'environnement pélagique relativementbienoxygéné. L'absence d'enrichissements en éléments traces sensibles aux conditions redox (TE) pendant l'excursion positive en δ13C confirme ces interprétations. Les données publiées de COT dans d'autres partie du globe indiquent cependant l'existence de conditions dys- à anaérobiques dans certains bassins restreints de l'Atlantique, l'Océan Austral et du Pacifique. L'évolution du phosphore (P) et la composition minéralogique des sédiments semblent indiquer un climat relativement chaud et humide avant l'excursion en δ13C entraînant une augmentation de l'altération continentale. Pendant le shift isotopique, une diminution des apports détritiques et du P suggèrent une transition vers des conditions plus arides. À l'Aptien Inférieur, le début de l'événement anoxique (OAE 1a) est marqué par une augmentation générale du P dans les sédiments indiquant une augmentation du niveau trophique à la base de l'excursion isotopique. Durant l'événement anoxique, les sédiments sont relativement appauvris en P. Cette diminution rapide associée à des enrichissements en TE est probablement liée à une remobilisation plus importante du P lors de la mise en place de conditions anoxiques dans les eaux de fond. Dans les environnements de bassin, le comportement des TE (enrichissements bien marqués) attestent de conditions réductrices bien marquées alors que dans les environnements moins profonds, les conditions semblent plutôt oxiques à dysoxiques. De plus, deux niveaux d'enrichissement en TE ont été observés dans la partie plus profonde de la Téthys, indiquant des fluctuations assez rapides dans l'intensité de l'anoxie de la colonne d'eau. Nous avons ensuite étudié les effets de l'événement anoxique de la fin du Cenomanien (OAE 2) dans un basin marginal de la marge nord de la Téthys avec la coupe de Chrummflueschlucht (à l'est de Euthal, Ct Schwyz). Les résultats ont montré que cette coupe présente un des enregistrements sédimentaires des plus complets de l'OAE 2 dans le domaine helvétique malgré un hiatus entre le pic 1 et 2 de l'excursion en δ13C. L'évolution du P montre une augmentation au début de l'OAE 2. Cependant, la distribution des TE indique que cette région n'a pas été affectée par des conditions réductrices trop importantes. Un second aspect de ce travail a été l'étude des différentes méthodes sur l'analyse de la distribution des TE. Des échantillons de l'OAE 1a ont été soumis à deux types d'extractions, l'une dite «totale » (attaque combinée d'acides HF/HNO3/HCI) et l'autre dite partielle » (HNO3). Les résultats obtenus suggèrent que les courbes de tendances des TE acquises par extraction partielle sont semblables à celle obtenues par extraction totale et normalisées par l'AI.