980 resultados para soil moisture zone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field-based soil moisture measurements are cumbersome. Thus, remote sensing techniques are needed because allows field and landscape-scale mapping of soil moisture depth-averaged through the root zone of existing vegetation. The objective of the study was to evaluate the accuracy of an empirical relationship to calculate soil moisture from remote sensing data of irrigated soils of the Apodi Plateau, in the Brazilian semiarid region. The empirical relationship had previously been tested for irrigated soils in Mexico, Egypt, and Pakistan, with promising results. In this study, the relationship was evaluated from experimental data collected from a cotton field. The experiment was carried out in an area of 5 ha with irrigated cotton. The energy balance and evaporative fraction (Λ) were measured by the Bowen ratio method. Soil moisture (θ) data were collected using a PR2 - Profile Probe (Delta-T Devices Ltd). The empirical relationship was tested using experimentally collected Λ and θ values and was applied using the Λ values obtained from the Surface Energy Balance Algorithm for Land (SEBAL) and three TM - Landsat 5 images. There was a close correlation between measured and estimated θ values (p<0.05, R² = 0.84) and there were no significant differences according to the Student t-test (p<0.01). The statistical analyses showed that the empirical relationship can be applied to estimate the root-zone soil moisture of irrigated soils, i.e. when the evaporative fraction is greater than 0.45.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Actively Heated Fiber Optics (AHFO) method to estimate soil moisture is tested and the analysis technique improved on. The measurements were performed in a lysimeter uniformly packed with loam soil with variable water content profiles. In the first meter of the soil profi le, 30 m of fiber optic cable were installed in a 12 loops coil. The metal sheath armoring the fiber cable was used as an electrical resistance heater to generate a heat pulse, and the soil response was monitored with a Distributed Temperature Sensing (DTS) system. We study the cooling following three continuous heat pulses of 120 s at 36 W m(-1) by means of long-time approximation of radial heat conduction. The soil volumetric water contents were then inferred from the estimated thermal conductivities through a specifically calibrated model relating thermal conductivity and volumetric water content. To use the pre-asymptotic data we employed a time correction that allowed the volumetric water content to be estimated with a precision of 0.01-0.035 (m(3) m(-3)). A comparison of the AHFO measurements with soil-moisture measurements obtained with calibrated capacitance-based probes gave good agreement for wetter soils [discrepancy between the two methods was less than 0.04 (m(3) m(-3))]. In the shallow drier soils, the AHFO method underestimated the volumetric water content due to the longertime required for the temperature increment to become asymptotic in less thermally conductive media [discrepancy between the two methods was larger than 0.1 (m(3) m(-3))]. The present work suggests that future applications of the AHFO method should include longer heat pulses, that longer heating and cooling events are analyzed, and, temperature increments ideally be measured with higher frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hysteresis models that eliminate the artificial pumping errors associated with the Kool-Parker (KP) soil moisture hysteresis model, such as the Parker-Lenhard (PL) method, can be computationally demanding in unsaturated transport models since they need to retain the wetting-drying history of the system. The pumping errors in these models need to be eliminated for correct simulation of cyclical systems (e.g. transport above a tidally forced watertable, infiltration and redistribution under periodic irrigation) if the soils exhibit significant hysteresis. A modification is made here to the PL method that allows it to be more readily applied to numerical models by eliminating the need to store a large number of soil moisture reversal points. The modified-PL method largely eliminates any artificial pumping error and so essentially retains the accuracy of the original PL approach. The modified-PL method is implemented in HYDRUS-1D (version 2.0), which is then used to simulate cyclic capillary fringe dynamics to show the influence of removing artificial pumping errors and to demonstrate the ease of implementation. Artificial pumping errors are shown to be significant for the soils and system characteristics used here in numerical experiments of transport above a fluctuating watertable. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgments This work was granted by the China-UK jointed Red Soil Critical Zone project from National Natural Science Foundation of China (NSFC: 41571130053; 41301233) and from Natural Environmental Research Council (NERC: Code: NE/N007611/1), and by the National Key Technology R&D Program of China (2011BAD31B04). We thank two anonymous reviewers for their constructive comments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The socioeconomic importance of sugar cane in Brazil is unquestionable because it is the raw material for the production of ethanol and sugar. The accurate spatial intervention in the management of the crop, resulting zones of soil management, increases productivity as well as its agricultural yields. The spatial and Person's correlations between sugarcane attributes and physico-chemical attributes of a Typic Tropustalf were studied in the growing season of 2009, in Suzanápolis, State of São Paulo, Brazil (20°28'10'' S lat.; 50°49'20'' W long.), in order to obtain the one that best correlates with agricultural productivity. Thus, the geostatistical grid with 120 sampling points was installed to soil and data collection in a plot of 14.6 ha with second crop sugarcane. Due to their substantial and excellent linear and spatial correlations with the productivity of the sugarcane, the population of plants and the organic matter content of the soil, by evidencing substantial correlations, linear and spatial, with the productivity of sugarcane, were indicators of management zones strongly attached to such productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tiivistelmä: TDR-mittausten kalibrointi viljeltyjen turvemaiden kosteuden mittaamiseen

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information on the spatial structure of soil physical and structural properties is needed to evaluate the soil quality. The purpose of this study was to investigate the spatial behavior of preconsolidation pressure and soil moisture in six transects, three selected along and three across coffee rows, at three different sites under different tillage management systems. The study was carried out on a farm, in Patrocinio, state of Minas Gerais, in the Southeast of Brazil (18 º 59 ' 15 '' S; 46 º 56 ' 47 '' W; 934 m asl). The soil type is a typic dystrophic Red Latosol (Acrustox) and consists of 780 g kg-1 clay; 110 g kg-1 silt and 110 g kg-1 sand, with an average slope of 3 %. Undisturbed soil cores were sampled at a depth of 0.10-0.13 m, at three different points within the coffee plantation: (a) from under the wheel track, where equipment used in farm operations passes; (b) in - between tracks and (c) under the coffee canopy. Six linear transects were established in the experimental area: three transects along and three across the coffee rows. This way, 161 samples were collected in the transect across the coffee rows, from the three locations, while 117 samples were collected in the direction along the row. The shortest sampling distance in the transect across the row was 4 m, and 0.5 m for the transect along the row. No clear patterns of the preconsolidation pressure values were observed in the 200 m transect. The results of the semivariograms for both variables indicated a high nugget value and short range for the studied parameters of all transects. A cyclic pattern of the parameters was observed for the across-rows transect. An inverse relationship between preconsolidation pressure and soil moisture was clearly observed in the samples from under the track, in both directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liquid and plastic limits of a soil are consistency limits that were arbitrarily chosen by Albert Atterberg in 1911. Their determination is by strictly empirical testing procedures. Except for the development of a liquid limit device and subsequent minor refinements the method has remained basically unchanged for over a half century. The empirical determination of an arbitrary limit would seem to be contrary to the very foundations of scientific procedures. However, the tests are relatively simple and the results are generally acceptable and valuable in almost every conceivable use of soil from an engineering standpoint. Such a great volume of information has been collected and compiled by application of these limits to cohesive soils, that it would be impractical and virtually impossible to replace the tests with a more rational testing method. Nevertheless, many believe that the present method is too time consuming and inconsistent. Research was initiated to investigate the development of a rapid and consistent method by relating the limits to soil moisture tension values determined by porous plate and pressure membrane apparatus. With the moisture tension method, hundreds of samples may be run at one time, operator variability is minimal, results are consistent, and a high degree of correlation to present liquid limit tests is possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to evaluate the relationship between the apparent complexity of hillslope soil moisture and the emergent patterns of catchment hydrological behaviour and water quality, we need fine-resolution catchment-wide data on soil moisture characteristics. This study proposes a methodology whereby vegetation patterns obtained from high-resolution orthorectified aerial photographs are used as an indicator of soil moisture characteristics. This enables us to examine a set of hypotheses regarding what drives the spatial patterns of soil moisture at the catchment scale (material properties or topography). We find that the pattern of Juncus effusus vegetation is controlled largely by topography and mediated by the catchment's material properties. Characterizing topography using the topographic index adds value to the soil moisture predictions relative to slope or upslope contributing area (UCA). However, these predictions depart from the observed soil moisture patterns at very steep slopes or low UCAs. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mulching has become an important technique for land cover, but there are some technical procedures which should be adjusted for these new modified conditions to establish optimum total water depth. It is also important to observe the soil-water relations as soil water distribution and wetted volume dimensions. The objective of the present study was to estimate melon evapotranspiration under mulching in a protected environment and to verify the water spatial distribution around the melon root system in two soil classes. Mulching provided 27 mm water saving by reducing water evaporation. In terms of volume each plant received, on average, the amount of 175.2 L of water in 84 days of cultivation without mulching, while when was used mulching the water requirement was 160.2 L per plant. The use of mulching reduced the soil moisture variability throughout the crop cycle and allowed a greater distribution of soil water that was more intense in the clay soil. The clayey soil provided on average 43 mm more water depth retention in 0.50 m soil deep relative to the sandy loam soil, and reduced 5.6 mm the crop cycle soil moisture variation compared to sandy loam soil.