994 resultados para soil microbiol activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate of carbon dioxide production is commonly used as a measure of microbial activity in the soil. The traditional method of CO2 determination involves trapping CO2 in an alkali solution and then determining CO2 concentration indirectly by titration of the remaining alkali in the solution. This method is still commonly employed in laboratories throughout the world due to its relative simplicity and the fact that it does not require expensive, specific equipment. However, there are several drawbacks: the method is time-consuming, requires large amounts of chemicals and the consistency of results depends on the operator's skills. With this in mind, an improved method was developed to analyze CO2 captured in alkali traps, which is cheap and relatively simple, with a substantially shorter sample handling time and reproducibility equivalent to the traditional titration method. A comparison of the concentration values determined by gas phase flow injection analysis (GPFIA) and titration showed no significant difference (p > 0.05), but GPFIA has the advantage that only a tenth of the sample volume of the titration method is required. The GPFIA system does not require the purchase of new, costly equipment but the device was constructed from items commonly found in laboratories, with suggestions for alternative configurations for other detection units. Furthermore, GPFIA for CO2 analysis can be equally applied to samples obtained from either the headspace of microcosms or from a sampling chamber that allows CO2 to be released from alkali trapping solutions. The optimised GPFIA method was applied to analyse CO2 released from degrading hydrocarbons from a site contaminated by diesel spillage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microbial processes have been used as indicators of soil quality, due to the high sensitivity to small changes in management to evaluate, e.g., the impact of applying organic residues to the soil. In an experiment in a completely randomized factorial design 6 x 13 + 4, (pot without soil and residue or absolute control) the effect of following organic wastes was evaluated: pulp mill sludge, petrochemical complex sludge, municipal sewage sludge, dairy factory sewage sludge, waste from pulp industry and control (soil without organic waste) after 2, 4, 6, 12, 14, 20, 28, 36, 44, 60, 74, 86, and 98 days of incubation on some soil microbial properties, with four replications. The soil microbial activity was highly sensitive to the carbon/nitrogen ratio of the organic wastes. The amount of mineralized carbon was proportional to the quantity of soil-applied carbon. The average carbon dioxide emanating from the soil with pulp mill sludge, corresponding to soil basal respiration, was 0.141 mg C-CO2 100 g-1 soil h-1. This value is 6.4 times higher than in the control, resulting in a significant increase in the metabolic quotient from 0.005 in the control to 0.025 mg C-CO2 g-1 Cmic h-1 in the soil with pulp mill sludge. The metabolic quotient in the other treatments did not differ from the control (p < 0.01), demonstrating that these organic wastes cause no disturbance in the microbial community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invasive plant species have been shown to alter the microbial community composition of the soils they invade and it is suggested that this below-ground perturbation of potential pathogens, decomposers or symbionts may feedback positively to allow invasive success. Whether these perturbations are mediated through specific components of root exudation are not understood. We focussed on 8-hydroxyquinoline, a putative allelochemical of Centaurea diffusa (diffuse knapweed) and used an artificial root system to differentiate the effects of 8-hydroxyquinoline against a background of total rhizodeposition as mimicked through supply of a synthetic exudate solution. In soil proximal (0-10 cm) to the artificial root, synthetic exudates had a highly significant (P < 0.001) influence on dehydrogenase, fluorescein diacetate hydrolysis and urease activity. in addition, 8-hydroxyquinoline was significant (p = 0.003) as a main effect on dehydrogenase activity and interacted with synthetic exudates to affect urease activity (p = 0.09). Hierarchical cluster analysis of 16S rDNA-based DGGE band patterns also identified a primary affect of synthetic exudates and a secondary affect of 8-hydroxyquinoline on bacterial community structure. Thus, we show that the artificial rhizosphere produced by the synthetic exudates was the predominant effect, but, that the influence of the 8-hydroxyquinoline signal on the activity and structure of soil microbial communities could also be detected. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho teve por objetivo estudar os efeitos de diferentes sistemas de uso e manejo na densidade do solo nas suas propriedades químicas e na atividade microbiana em um Latossolo Vermelho distrófico (Oxisol). As amostras de solo foram retiradas de parcelas dos seguintes tratamentos: cerrado denso preservado, pastagem de Brachiaria decumbens degradada (20 anos), plantio direto com rotação de culturas (8 anos) e sistema convencional com rotação de culturas anuais (10 anos). O delineamento experimental utilizado foi o inteiramente casualizado, com dez repetições. O uso contínuo de plantio direto resultou em mais alta taxa de C-biomassa microbiana e menor perda relativa de carbono pela respiração basal, podendo determinar, desta forma, maior acúmulo de C no solo a longo prazo. Proporcionou, ainda, melhoria na densidade aparente e nas propriedades químicas do solo. Assim, o sistema plantio direto, com manejo de culturas, mostrou ser uma alternativa para a conservação e manutenção das condições físicas e do potencial produtivo de solos de cerrado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho objetivou estudar a velocidade de hidrólise da uréia em dois diferentes solos brasileiros (Latossolo Vermelho Aluminoférrico típico e Latossolo Vermelho distrófico típico) onde foram realizados ensaios sobre o efeito do tempo e condições de armazenamento, concentração do substrato (uréia), temperatura, pH e tempo de incubação sobre a atividade da urease. As melhores condições de armazenamento foram em temperatura ambiente ou 5 ºC, após secagem ao ar, por um período de até 7 dias; para as condições estudadas, o melhor tempo de incubação foi de uma hora a 25-30 ºC, sem a utilização de tampão para acertar o pH, e a concentração de uréia suficiente foi de 3,30 g L-1, para o Latossolo Vermelho Aluminoférrico típico, e de 2,5 g L-1, para o Latossolo Vermelho distrófico típico para obter a velocidade máxima da enzima.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are great concerns about degradation of agricultural soils. It has been suggested that cultivating different plant species intercropped with coffee plants can increase microbial diversity and enhance soil sustainability. The objective of this study was to evaluate enzyme activity (urease, arylsulfatase and phosphatase) and alterations in C and N mineralization rates as related to different legume cover crops planted between rows of coffee plants. Soil samples were collected in a field experiment conducted for 10 years in a sandy soil in the North of Paraná State, Brazil. Samples were collected from the 0-10 cm layer, both from under the tree canopy and in-between rows in the following treatments: control, Leucaena leucocephala, Crotalaria spectabilis, Crotalaria breviflora, Mucuna pruriens, Mucuna deeringiana, Arachis hypogaea and Vigna unguiculata. The soil was sampled in four stages of legume cover crops: pre-planting (September), after planting (November), flowering stage (February) and after plant residue incorporation (April), from 1997 to 1999. The green manure species influenced soil enzyme activity (urease, arylsulfatase and phosphatase) and C and N mineralization rates, both under the tree canopy and in-between rows. Cultivation of Leucaena leucocephala increased acid phosphatase and arilsulfatase activity and C and N mineralization both under the tree canopy and in-between rows. Intercropped L. leucocephala increased urease activity under the tree canopy while C. breviflora increased urease activity in-between rows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover crops may difffer in the way they affect rhizosphere microbiota nutrient dynamics. The purpose of this study was to evaluate the effect of mycorrhizal and non-mycorrhizal cover crops on soil phosphatase activity and its persistence in subsequent crops. A three-year experiment was carried out with a Typic Quartzipsamment. Treatments were winter species, either mycorrhizal black oat (Avena strigosa Schreb) or the non-mycorrhizal species oilseed radish (Raphanus sativus L. var. oleiferus Metzg) and corn spurry (Spergula arvensis L.). The control treatment consisted of resident vegetation (fallow in the winter season). In the summer, a mixture of pearl millet (Pennisetum americanum L.) with sunnhemp (Crotalaria juncea L.) or with soybean (Glycine max L.) was sown in all plots. Soil cores (0-10 cm) and root samples were collected in six growing seasons (winter and summer of each year). Microbial biomass P was determined by the fumigation-extraction method and phosphatase activity using p-nitrophenyl-phosphate as enzyme substrate. During the flowering stage of the winter cover crops, acid phosphatase activity was 30-35 % higher in soils with the non-mycorrhizal species oilseed radish, than in the control plots, regardless of the amount of P immobilized in microbial biomass. The values of enzyme activity were intermediate in the plots with corn spurry and black oat. Alkaline phosphatase activity was 10-fold lower and less sensitive to the treatments, despite the significant relationship between the two phosphatase activities. The effect of plant species on the soil enzyme profile continued in the subsequent periods, during the growth of mycorrhizal summer crops, after completion of the life cycle of the cover crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land degradation causes great changes in the soil biological properties. The process of degradation may decrease soil microbial biomass and consequently decrease soil microbial activity. The study was conducted out during 2009 and 2010 at the four sites of land under native vegetation (NV), moderately degraded land (LDL), highly degraded land (HDL) and land under restoration for four years (RL) to evaluate changes in soil microbial biomass and activity in lands with different degradation levels in comparison with both land under native vegetation and land under restoration in Northeast Brazil. Soil samples were collected at 0-10 cm depth. Soil organic carbon (SOC), soil microbial biomass C (MBC) and N (MBN), soil respiration (SR), and hydrolysis of fluorescein diacetate (FDA) and dehydrogenase (DHA) activities were analyzed. After two years of evaluation, soil MBC, MBN, FDA and DHA had higher values in the NV, followed by the RL. The decreases of soil microbial biomass and enzyme activities in the degraded lands were approximately 8-10 times as large as those found in the NV. However, after land restoration, the MBC and MBN increased approximately 5-fold and 2-fold, respectively, compared with the HDL. The results showed that land degradation produced a strong decrease in soil microbial biomass. However, land restoration may promote short- and long-term increases in soil microbial biomass.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of drying and rewetting (DRW) have been studied extensively in non-saline soils, but little is known about the impact of DRW in saline soils. An incubation experiment was conducted to determine the impact of 1-3 drying and re-wetting events on soil microbial activity and community composition at different levels of electrical conductivity in the saturated soil extract (ECe) (ECe 0.7, 9.3, 17.6 dS m(-1)). A non-saline sandy loam was amended with NaCl to achieve the three EC levels 21 days prior to the first DRW; wheat straw was added 7 days prior to the first DRW. Each DRW event consisted of 1 week drying and 1 week moist (50% of water holding capacity, WHC). After the last DRW, the soils were maintained moist until the end of the incubation period (63 days after addition of the wheat straw). A control was kept moist (50% of WHC) throughout the incubation period. Respiration rates on the day after rewetting were similar after the first and the second DRW, but significantly lower after the third DRW. After the first and second DRW, respiration rates were lower at EC17.6 compared to the lower EC levels, whereas salinity had little effect on respiration rates after the third DRW or at the end of the experiment when respiration rates were low. Compared to the continuously moist treatment, respiration rates were about 50% higher on day 15 (d15) and d29. On d44, respiration rates were about 50% higher at EC9.7 than at the other two EC levels. Cumulative respiration was increased by DRW only in the treatment with one DRW and only at the two lower EC levels. Salinity affected microbial biomass and community composition in the moist soils but not in the DRW treatments. At all EC levels and all sampling dates, the community composition in the continuously moist treatment differed from that in the DRW treatments, but there were no differences among the DRW treatments. Microbes in moderately saline soils may be able to utilise substrates released after multiple DRW events better than microbes in non-saline soil. However, at high EC (EC17.6), the low osmotic potential reduced microbial activity to such an extent that the microbes were not able to utilise substrate released after rewetting of dry soil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The removal of the litter layer in Portuguese pine forests would reduce fire hazard, but on the other hand this practice would influence the thermal regime of the soil, hence affecting soil biological activity, litter decomposition and nutrient dynamics. Temperature profiles of a sandy soil (Haplic Podzol) under a pine forest were measured with thermocouples at depths to 16 cm, with and without litter layer. The litter layer acted as a thermal insulator, reducing the amplitude of the periodic temperature variation in the mineral soil underneath and increasing damping depths, particularly at low soil water contents. At the mineral soil surface the reduction of amplitudes was about 2.5 ºC in the annual cycle and 5 to 6.7 ºC in the daily cycle, depending on the soil water content. When soil was both cold and wet, mean daily soil temperatures were higher (about 1 - 1.5 ºC) under the litter layer. Improved soil thermal conditions under the litter layer recommend its retention as a forest management practice to follow in general.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of machinery in agricultural and forest management activities frequently increases soil compaction, resulting in greater soil density and microporosity, which in turn reduces hydraulic conductivity and O2 and CO2 diffusion rates, among other negative effects. Thus, soil compaction has the potential to affect soil microbial activity and the processes involved in organic matter decomposition and nutrient cycling. This study was carried out under controlled conditions to evaluate the effect of soil compaction on microbial activity and carbon (C) and nitrogen (N) mineralization. Two Oxisols with different mineralogy were utilized: a clayey oxidic-gibbsitic Typic Acrustox and a clayey kaolinitic Xantic Haplustox (Latossolo Vermelho-Amarelo ácrico - LVA, and Latossolo Amarelo distrófico - LA, respectively, in the Brazil Soil Classification System). Eight treatments (compaction levels) were assessed for each soil type in a complete block design, with six repetitions. The experimental unit consisted of PVC rings (height 6 cm, internal diameter 4.55 cm, volume 97.6 cm³). The PVC rings were filled with enough soil mass to reach a final density of 1.05 and 1.10 kg dm-3, respectively, in the LVA and LA. Then the soil samples were wetted (0.20 kg kg-1 = 80 % of field capacity) and compacted by a hydraulic press at pressures of 0, 60, 120, 240, 360, 540, 720 and 900 kPa. After soil compression the new bulk density was calculated according to the new volume occupied by the soil. Subsequently each PVC ring was placed within a 1 L plastic pot which was then tightly closed. The soils were incubated under aerobic conditions for 35 days and the basal respiration rate (CO2-C production) was estimated in the last two weeks. After the incubation period, the following soil chemical and microbiological properties were detremined: soil microbial biomass C (C MIC), total soil organic C (TOC), total N, and mineral N (NH4+-N and NO3--N). After that, mineral N, organic N and the rate of net N mineralization was calculated. Soil compaction increased NH4+-N and net N mineralization in both, LVA and LA, and NO3--N in the LVA; diminished the rate of TOC loss in both soils and the concentration of NO3--N in the LA and CO2-C in the LVA. It also decreased the C MIC at higher compaction levels in the LA. Thus, soil compaction decreases the TOC turnover probably due to increased physical protection of soil organic matter and lower aerobic microbial activity. Therefore, it is possible to conclude that under controlled conditions, the oxidic-gibbsitic Oxisol (LVA) was more susceptible to the effects of high compaction than the kaolinitic (LA) as far as organic matter cycling is concerned; and compaction pressures above 540 kPa reduced the total and organic nitrogen in the kaolinitic soil (LA), which was attributed to gaseous N losses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many forested areas have been converted to intensive agricultural use to satisfy food, fiber, and forage production for a growing world population. There is great interest in evaluating forest conversion to cultivated land because this conversion adversely affects several soil properties. We examined soil microbial, physical, and chemical properties in an Oxisol (Latossolo Vermelho distrófico) of southern Brazil 24 years after forest conversion to a perennial crop with coffee or annual grain crops (maize and soybeans) in conventional tillage or no-tillage. One goal was to determine which soil quality parameters seemed most sensitive to change. A second goal was to test the hypothesis that no-tillage optimized preservation of soil quality indicators in annual cropping systems on converted land. Land use significantly affected microbial biomass and its activity, C and N mineralization, and aggregate stability by depth. Cultivated sites had lower microbial biomass and mineralizable C and N than a forest used as control. The forest and no-tillage sites had higher microbial biomass and mineralizable C and N than the conventional tillage site, and the metabolic quotient was 65 and 43 % lower, respectively. Multivariate analysis of soil microbial properties showed a clear separation among treatments, displaying a gradient from conventional tillage to forest. Although the soil at the coffee site was less disturbed and had a high organic C content, the microbial activity was low, probably due to greater soil acidity and Al toxicity. Under annual cropping, microbial activity in no-tillage was double that of the conventional tillage management. The greater microbial activity in forest and no-tillage sites may be attributed, at least partially, to lower soil disturbance. Reducing soil disturbance is important for soil C sequestration and microbial activity, although control of soil pH and Al toxicity are also essential to maintain the soil microbial activity high.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C) stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis) at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes) – BRAQ, pearl millet (Pennisetum glaucum) – MIL, jack bean (Canavalia ensiformis) – JB, blend (50 % each) of jack bean + millet (JB/MIL), and spontaneous vegetation (SPV). The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC) content, light fraction (LF), and the particulate organic C (POC), and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1) in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Southern blight (Sclerotium rolfsii) of soybean (Glycine max) is an important disease throughout the world. Some soil amendments can reduce disease levels by improving soil microbial activity. The main goals of this study were to investigate the effects of soil amendments such as dried powders of kudzu (Pueraria lobata), velvetbean (Mucuna deeringiana), and pine bark (Pinus taeda), on soil microbial population and disease caused by S. rolfsii on soybean. Pine bark, velvetbean (mucuna) and kudzu (25 g kg-1) added to soil were effective in reducing disease incidence [non-amended (NA) ~ 39%; amended (A) ~ 2 to 11%)]. Bacillus megaterium was the bacteria most frequently isolated in soils with velvetbean or kudzu (NA ~ log 5.7 CFU g-1 of dried soil; A ~ log 6.2). Soils with velvetbean and kudzu stimulated increase in population of Enterobacter aerogenes (NA ~ log 3; A ~ log 5.1-5.8). Pseudomonas putida population was higher in A than in NA (NA ~ log 4; A ~ log 5.5), and was negatively correlated (r = -0.83, P = 1%) to disease incidence. Soil amended with kudzu and pine bark stimulated increases in populations of Trichoderma koningii (NA ~ log 1.6; A ~ log 2.9) and Penicillium citreonigrum (NA ~ log 1.3; A ~ log 2.6), respectively. Penicillium herquei soil population increased with addition of kudzu (NA ~ log 1.2; A, ~ log 2.5). These microorganisms are antagonists of soil-borne pathogens. Powders of velvetbean, kudzu, and pine bark can increase antagonistic population in soil and reduce disease.