998 resultados para soil firming mechanism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

If inappropriately conducted, management and sowing practices may compromise the environment and the profitability of the agricultural activity. The aim of this study was to analyze the furrow opener mechanisms action and the level of load applied to soil firming mechanism in no-till, on the Oxisol resistance to penetration during soybean sowing, under three soil moistures. The experiment was arranged in split-split plot design, in which the plots were composed by three soil moistures (23.8; 25.5 and 27.5% b.s.), two furrow opener mechanisms sub-plots (double disks and furrow plough) and the split-split plot of three levels of load applied to soil firming mechanism (12.2; 18.5 and 24.1 kPa), according to randomized blocks design, with three replications. The soil moisture provided different resistance behavior to penetration with the depth, on the seedbed, independently of the furrow opener and the level of load applied to soil firming mechanism. The furrow plough use provided less soil resistance to penetration when compared to the double disk furrow opener, on the seedbed, independently of the soil moisture and the level of load applied to soil firming mechanism. The pressure applied by soil firming mechanism of 18.5 kPa provided the lower resistance to penetration, when the furrow plough was used. The soil resistance to penetration was less on the sowing line than on between rows, with 20 cm deep.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As culturas do milho e da soja respondem pela maior parte da produção nacional de grãos, predominando o sistema de plantio direto. Para uma semeadura direta de qualidade, o bom aterramento do sulco é indispensável, pois garante um ambiente adequado às sementes. Neste sentido, é importante estimar a mobilização de solo promovida por uma haste sulcadora estreita durante esta operação. O modelo analítico existente visa representar a mobilização do solo no sistema de plantio convencional. Como consequência, há situações em que este não pode se aplicado, como no caso de hastes sulcadoras estreitas utilizadas em semeadoras de plantio direto. Nestas situações, o mecanismo de falha do solo pode se alterar, assumindo um comportamento não modelado na literatura. Essa pesquisa propõe um modelo fuzzy capaz de representar estas situações, aproveitando conhecimento da teoria de mecânica dos solos e da análise de resultados experimentais. No modelo proposto, parte das regras descrevem situações não abrangidas pelo modelo analítico, as quais foram formuladas a partir da estimativa das prováveis áreas de solo mobilizado. O modelo fuzzy foi testado com dados de experimentos conduzidos durante a pesquisa, em duas condições de granulometria de solo (arenoso e argiloso). O modelo proposto reproduziu as tendências observadas nos dados experimentais, mas superestimou os valores de área observados, sendo esse efeito bem mais intenso para os dados do experimento em solo arenoso. A superestimativa ocorreu devido à soma de diversos fatores. Um deles é a diferença entre as leituras experimentais, as quais consideram apenas o solo realmente movimentado, e a premissa do modelo analítico, que considera toda a área de solo incluindo aquela cisalhada, porém não mobilizada. Outro fator foi devido ao efeito do disco de corte da palha, que pré-cisalha o solo à frente da ferramenta. No ensaio em solo arenoso os valores observados de área de solo mobilizado foram menores que os esperados, intensificando o efeito de superestimativa do modelo fuzzy, sendo que este efeito não representa uma deficiência deste modelo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract The plasmid pME6863, carrying the aiiA gene from the soil bacterium Bacillus sp. A24 that encodes a lactonase enzyme able to degrade N-acyl-homoserine lactones (AHLs), was introduced into the rhizosphere isolate Pseudomonas fluorescens P3. This strain is not an effective biological control agent against plant pathogens. The transformant P. fluorescens P3/pME6863 acquired the ability to degrade AHLs. In planta, P. fluorescens P3/pME6863 significantly reduced potato soft rot caused by Erwinia carotovora and crown gall of tomato caused by Agrobacterium tumefaciens to a similar level as Bacillus sp. A24. Little or no disease reduction was observed for the wild-type strain P3 carrying the vector plasmid without aiiA. Suppression of potato soft rot was observed even when the AHL-degrading P. fluorescens P3/pME6863 was applied to tubers 2 days after the pathogen, indicating that biocontrol was not only preventive but also curative. When antagonists were applied individually with the bacterial plant pathogens, biocontrol activity of the AHL degraders was greater than that observed with several Pseudomonas 2,4-diacetylphloroglucinol-producing strains and with Pseudomonas chlororaphis PCL1391, which relies on production of phenazine antibiotic for disease suppression. Phenazine production by this well characterized biological control strain P. chlororaphis PCL1391 is regulated by AHL-mediated quorum sensing. When P. chlororaphis PCL1391 was co-inoculated with P. fluorescens P3/pME6863 in a strain mixture, the AHL degrader interfered with the normally excellent ability of the antibiotic producer to suppress tomato vascular wilt caused by Fusarium oxysporum f. sp. lycopersici. Our results demonstrate AHL degradation as a novel biocontrol mechanism, but also demonstrate the potential for non-target interactions that can interfere with the biocontrol efficacy of other strains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work objectified to evaluate the efficiency of two meter mechanism of corn seeds when submitted to different forward speed and soil management system during the non-tillage seeding. It was used a factorial design in randomized blocks. The factors whose effects were examined were related to the seeders with pneumatic and horizontal disk meter mechanisms for the distribution of the seeds, to the set tractor-seeder forward speeds (4.4; 8.0 and 9.8 km h-1), and to the soil management system considering the corn no-tillage seeding over minimum tillage with chisel plow and the no-tillage system for the seeding of oat culture (Avena strigosa Schreb). It was verified that the forward speed didn't influence the initial and final stands of plants but it interfered in the regularity of longitudinal distribution of plants. The smallest speed provided the largest percentile of normal spacing between plants. The pneumatic meter mechanism presented better performance than the horizontal disk perforated in the longitudinal distribution of plants. About corn productivity aspect it's indifferent the recommendation of use for pneumatic and perforated horizontal disk meter mechanism of seeds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work objectified to evaluate the efficiency of two meter mechanism of corn seeds when submitted to different forward speed and soil management system during the non-tillage seeding. It was used a factorial design in randomized blocks. The factors whose effects were examined were related to the seeders with pneumatic and horizontal disk meter mechanisms for the distribution of the seeds, to the set tractor-seeder forward speeds (4.4; 8.0 and 9.8 km h(-1)), and to the soil management system considering the corn no-tillage seeding over minimum tillage with chisel plow and the no-tillage system for the seeding of oat culture (Avena strigosa Schreb). It was verified that the forward speed didn't influence the initial and final stands of plants but it interfered in the regularity of longitudinal distribution of plants. The smallest speed provided the largest percentile of normal spacing between plants. The pneumatic meter mechanism presented better performance than the horizontal disk perforated in the longitudinal distribution of plants. About corn productivity aspect it's indifferent the recommendation of use for pneumatic and perforated horizontal disk meter mechanism of seeds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO(2) and N(2)O fluxes close to similar to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO(2) fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO(2) flux variability. Soil N(2)O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N(2)O fluxes, accounting for more than twice the N(2)O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N(2)O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N(2)O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO(2) and N(2)O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N(2)O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO(2) and N(2)O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteinase inhibitors (PI) are present in plant tissues, especially in seeds, and act as a defense mechanism against herbivores and pathogens. Serine PI from soybean such as Bowman-Birk (BBPI) and Kunitz have been used to enhance resistance of sugarcane varieties to the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), the major pest of this crop. The use of these genetically-modified plants (GM) expressing PI requires knowledge of its sustainability and environmental safety, determining the stability of the introduced characteristic and its effects on non-target organisms. The objective of this study was to evaluate direct effects of ingestion of semi-purified and purified soybean PI and GM sugarcane plants on the soil-dwelling mite Scheloribates praeincisus (Berlese) (Acari: Oribatida). This mite is abundant in agricultural soils and participates in the process of organic matter decomposition; for this reason it will be exposed to PI by feeding on GM plant debris. Eggs of S. praeincisus were isolated and after larvae emerged, immatures were fed milled sugarcane leaves added to semi-purified or purified PI (Kunitz and BBPI) or immatures were fed GM sugarcane varieties expressing Kunitz and BBPI type PI or the untransformed near isogenic parental line variety as a control. Developmental time (larva-adult) and survival of S. praeincisus was evaluated. Neither Kunitz nor BBPI affected S. praeincisus survival. On the other hand, ingestion of semi-purified and purified Kunitz inhibitor diminished duration of S. praeincisus immature stages. Ingestion of GM senescent leaves did not have an effect on S. praeincisus immature developmental time and survival, compared to ingestion of leaves from the isogenic parental plants. These results indicate that cultivation of these transgenic sugarcane plants is safe for the non-target species S. praeincisus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the antioxidant responses of three bacteria (SD1. KD and K9) isolated from soil previously treated with the herbicides metolachlor and acetochlor. By 165 rRNA gene sequencing, we determined that SD1 is phylogenetically related to Enterobacter asburiae, while KD and K9 have divergent genomes that more closely resemble that of Enterobacter amnigenus. Decreased levels of lipid peroxidation were observed in SD1 and KD following treatment with 34 mM metolachlor or 62 mM acetochlor, respectively, indicating that both bacteria were able to adapt to an increase in ROS production. In the presence of 34 mM metolachlor or 62 mM acetochlor, all bacterial isolates exhibited increases in total catalase (CAT) activity (81% for SDI, 53% for KD and 59% for K9), whereas total SOD activity (assessed based on the profile and intensity of the bands) was slightly reduced when the bacteria were exposed to high concentrations of the herbicides (340 mM metolachlor or 620 mM acetochlor). This effect was due to a specific reduction in SOD IV (K9 and KD isolates) by 45% and 90%, respectively, and SOD V (SD1 isolate) isoenzymes by 60%. The most striking result was obtained in the SD1 isolate, where two novel isoenzymes of glutathione reductase (GR) that responded specifically to metolachlor were identified. In addition, acetochlor was shown to induce the expression of a new 57 kDa protein band in the K9 and KD isolates. The bacteria isolated from the herbicide-contaminated soil exhibited an efficient antioxidant system response at herbicide concentrations of up to 34 mM metolachlor or 62 mM acetochlor. These data suggest a mechanism for tolerance that may include the control of an imbalance in ROS production versus scavenging. The data suggest that specific isoenzymes of CAT and GR could be involved in this herbicide tolerance mechanism. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The system of no-till sowing stands out as being a technology that suits the objectives of more rational use of the soil and greater protection against the erosion. However, through till, any of it, occurs modifications of the soil's structure. This current work aims to study the influence of the energy state of the water and of the organic matter on the mechanism of compaction of Red Oxisol under no-till management system. Humid and non-deformed sample were collected in horizon AP of two agricultural areas under no-till, with and without rotation of cultures. In the laboratory, these samples were broken into fragments and sifted to obtain aggregates of 4 to 5 mm sized, which were placed in equilibrium under four matrix potentials. Thereafter, they were exposed to uni-dimensional compression with pressures varying from 32 to 1,000 kPa. The results in such a way show that the highest compressibility of aggregates both for the tilling with rotation of cultures as for the tilling without rotation of cultures, occurred for matrix potential -32 kPa (humidity of 0.29-0.32 kg kg-1, respectively), while the minor occurred for the potentials of -1 and -1,000 kPa (humidity of 0.35 and 0.27 kg kg-1, respectively), indicating that this soil should not be worked with humidity ranging around 0.29 to 0.32 kg kg-1 and the highest reduction of volume of aggregates was obtained for the mechanical pressures lower than 600 inferior kPa, indicating that these soils showed to be very influenced by compression, when exposed to mechanical work. Also, the aggregates of soil under no-till and rotation of crops presented higher sensitivity to the compression than the aggregates of soil under no-till and without rotation of crops, possibly for having better structural conditions given to a higher content of organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phytoremediation strategies utilize plants to decontaminate or immobilize soil pollutants. Among soil pollutants, metalloid As is considered a primary concern as a toxic element to organisms. Arsenic concentrations in the soil result from anthropogenic activities such as: the use of pesticides (herbicides and fungicides); some fertilizers; Au, Pb, Cu and Ni mining; Fe and steel production; coal combustion; and as a bi-product during natural gas extraction. This study evaluated the potential of pigeon pea (Cajanus cajan), wand riverhemp (Sesbania virgata), and lead tree (Leucaena leucocephala) as phytoremediators of soils polluted by As. Soil samples were placed in plastic pots, incubated with different As doses (0; 50; 100 and 200 mg dm-3) and then sown with seeds of the three species. Thirty (pigeon pea) and 90 days after sowing, the plants were evaluated for height, collar diameter and dry matter of young, intermediate and basal leaves, stems and roots. Arsenic concentration was determined in different aged leaves, stems and roots to establish the translocation index (TI) between the plant root system and aerial plant components and the bioconcentration factors (BF). The evaluated species showed distinct characteristics regarding As tolerance, since the lead tree and wand riverhemp were significantly more tolerant than pigeon pea. The high As levels found in wand riverhemp roots suggest the existence of an efficient accumulation and compartmentalization mechanism in order to reduce As translocation to shoot tissues. Pigeon pea is a sensitive species and could serve as a potential bioindicator plant, whereas the other two species have potential for phytoremediation programs in As polluted areas. However, further studies are needed with longer exposure times in actual field conditions to reach definite conclusions on relative phytoremediation potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very high concentrations of uranium (up to 4000 ppm) were found in a natural soil in the Dischma valley, an alpine region in the Grisons canton in Switzerland. The goal of this study was to examine the redox state and the nature of uranium binding in the soil matrix in order to understand the accumulation mechanism. Pore water profiles collected from Dischma soil revealed the establishment of anoxic conditions with increasing soil depth. A combination of chemical extraction methods and spectroscopy was applied to characterize the redox state and binding environment of uranium in the soil. Bicarbonate extraction under anoxic conditions released most of the uranium indicating that uranium occurs predominantly in the hexavalent form. Surprisingly, the uranium redox state did not vary greatly as a function of depth. X-ray absorption near edge spectroscopy (XANES), confirmed that uranium was present as a mixture of U(VI) and U(IV) with U(VI) dominating. Sequential extractions of soil samples showed that the dissolution of solid organic matter resulted in the simultaneous release of the majority of the soil uranium content (>95%). Extended X-ray absorption fine structure (EXAFS) spectroscopy also revealed that soil-associated uranium in the soil matrix was mainly octahedrally coordinated, with an average of 1.7 axial (at about 1.76 Å) and 4.6 to 5.3 equatorial oxygen atoms (at about 2.36 Å) indicating the dominance of a uranyl-like (UO22+) structure presumably mixed with some U(IV). An additional EXAFS signal (at about 3.2 Å) identified in some spectra suggested that uranium was also bound (via an oxygen atom) to a light element such as carbon, phosphorus or silicon. Gamma spectrometric measurements of soil profiles failed to identify uranium long-life daughter products in the soil which is an indication that uranium originates elsewhere and was transported to its current location by water. Finally, it was found that the release of uranium from the soil was significantly promoted at very low pH values (pH 2) and increased with increasing pH values (between pH 5 and 9).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the application of terrestrial laser scanning (TLS) for the monitoring and characterization of an active landslide area in Val Canaria (Ticino, Southern Swiss Alps). At catchment scale, the study area is affected by a large Deep Seated Gravitational Slope Deformation (DSGSD) area presenting, in the lower boundary, several retrogressive landslides active since the 1990s. Due to its frequent landslide events this area was periodically monitored by TLS since 2006. Periodic acquisitions provided new information on 3D displacements at the bottom of slope and the detection of centimetre to decimetre level scale changes (e.g. rockfall and pre-failure deformations). In October 2009, a major slope collapse occured at the bottom of the most unstable area. Based on the comparison between TLS data before and after the collapse, we carried out a detailed failure mechanism analysis and volume calculation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distribution and stocks of soil organic matter (SOM) compartments after Pinus monoculture introduction in a native pasture area of a Cambisol, Santa Catarina, Brazil, were investigated. Pinus introduction increased soil acidity, content of exchangeable Al+3 and diminished soil nutrients. Nevertheless, soil C stock increased in all humic fractions of the 0-5 cm layer after Pinus afforestation. In the subsurface, the vegetation change only promoted SOM redistribution from the NaOH-extractable humic substances to a less hydrophobic humin fraction. Under Pinus, soil organo-mineral interactions were relevant up to a 15 cm depth, while in pasture environment, this mechanism occurred mainly in the surface layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technology that employs genetic modifications brought a significant increase in the utilization of glyphosate. Transgenic soybean has been suffering injury, even though it possesses a resistance mechanism to glyphosate. Currently, there are only a few studies on the dynamics of glyphosate in transgenic soybean planted in soils with different textures interacting with phosphorus concentrations. This study focused on assessing the effects of glyphosate in transgenic soybean plants on different types of soil and at different phosphorus levels. The experimental design was completely randomized, in factorial design: 2 x 6 x 3, that being 2 soil types, 6 doses of glyphosate and 3 levels of phosphorus, and four replications. Plants were cultivated for thirty days in pots with two types of soil, one being clayey (Red-Yellow Latosol) and the other sandy (Quartzarenic Neosol). They received one, two, and three times the maintenance dose of fertilization of phosphorus, corresponding to: 170, 250 and 330 kg of P2O5 ha-1 to QN, and 380, 460 and 540 kg P2O5 ha-1 to RYL, respectively. Glyphosate was applied at six different doses: 0, 1,200, 2,400, 12,000, 60,000 and 120,000 g ha-1 of active ingredient. Plant height, a and b chlorophyll, and shoot were lower for the plants that received lower doses of glyphosate, regardless of the type of soil. Greater availability of phosphorus and lower amount of glyphosate used in Quartzarenic Neosol soil provided for less phytointoxication symptoms in transgenic soybean.