994 resultados para soil development


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new procedure for determining eleven organochlorine pesticides in soils using microwave-assisted extraction (MAE) and headspace solid phase microextraction (HS-SPME) is described. The studied pesticides consisted of mirex, α- and γ-chlordane, p,p’-DDT, heptachlor, heptachlor epoxide isomer A, γ-hexachlorocyclohexane, dieldrin, endrin, aldrine and hexachlorobenzene. The HS-SPME was optimized for the most important parameters such as extraction time, sample volume and temperature. The present analytical procedure requires a reduced volume of organic solvents and avoids the need for extract clean-up steps. For optimized conditions the limits of detection for the method ranged from 0.02 to 3.6 ng/g, intermediate precision ranged from 14 to 36% (as CV%), and the recovery from 8 up to 51%. The proposed methodology can be used in the rapid screening of soil for the presence of the selected pesticides, and was applied to landfill soil samples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reviews the role of alluvial soils in vegetated gravelly river braid plains. When considering decadal time scales of river evolution, we argue that it becomes vital to consider soil development as an emergent property of the developing ecosystem. Soil processes have been relatively overlooked in accounts of the interactions between braided river processes and vegetation, although soils have been observed on vegetated fluvial landforms. We hypothesise that soil development plays a major role in the transition (speed and pathway) from a fresh sediment deposit to a vegetated soil-covered landform. Disturbance (erosion and/or deposition), vertical sediment structure (process history), vegetation succession, biological activity and water table fluctuation are seen as the main controls on early alluvial soil evolution. Erosion and deposition processes may not only act as soil disturbing agents, but also as suppliers of ecosystem resources, because of their role in delivering and changing access (e.g. through avulsion) to fluxes of water, fine sediments and organic matter. In turn, the associated initial ecosystem may influence further fluvial landform development, such as through the trapping of fine-grained sediments (e.g. sand) by the engineering action of vegetation and the deposit stabilisation by the developing above and belowground biomass. This may create a strong feedback between geomorphological processes, vegetation succession and soil evolution which we summarise in a conceptual model. We illustrate this model by an example from the Allondon River (CH) and identify the research questions that follow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil chronofunctions are an alternative for the quantification of soil-forming processes and underlie the modeling of soil genesis. To establish soil chronofunctions of a Heilu soil profile on Loess in Luochuan, selected soil properties and the 14C ages in the Holocene were studied. Linear, logarithmic, and third-order polynomial functions were selected to fit the relationships between soil properties and ages. The results indicated that third-order polynomial function fit best for the relationships between clay (< 0.002 mm), silt (0.002-0.02 mm), sand (0.02-2 mm) and soil ages, and a trend of an Ah horizon ocurrence in the profile. The logarithmic function indicated mainly variations of soil organic carbon and pH with time (soil age). The variation in CaCO3 content, Mn/Zr, Fe/Zr, K/Zr, Mg/Zr, Ca/Zr, P/Zr, and Na/Zr ratios with soil age were best described by three-order polynomial functions, in which the trend line showed migration of CaCO3 and some elements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traditionally, braided river research has considered flow, sediment transport processes and, recently, vegetation dynamics in relation to river morphodynamics. However, if considering the development of woody vegetated patches over a time scale of decades, we must consider the extent to which soil forming processes, particularly related to soil organic matter, impact the alluvial geomorphic-vegetation system. Here we quantify the soil organic matter processing (humification) that occurs on young alluvial landforms. We sampled different geomorphic units, ranging from the active river channel to established river terraces in a braided river system. For each geomorphic unit, soil pits were used to sample sediment/soil layers that were analysed in terms of grain size (<2mm) and organic matter quantity and quality (RockEval method). A principal components analysis was used to identify patterns in the dataset. Results suggest that during the succession from bare river gravels to a terrace soil, there is a transition from small amounts of external organic matter supply provided by sedimentation processes (e.g. organic matter transported in suspension and deposited on bars), to large amounts of autogenic in situ organic matter production due to plant colonisation. This appears to change the time scale and pathways of alluvial succession (bio-geomorphic succession). However, this process is complicated by: the ongoing possibility of local sedimentation, which can serve to isolate surface layers via aggradation from the exogenic supply; and erosion which tends to create fresh deposits upon which organic matter processing must re-start. The result is a complex pattern of organic matter states as well as a general lack of any clear chronosequence within the active river corridor. This state reflects the continual battle between deposition events that can isolate organic matter from the surface, erosion events that can destroy accumulating organic matter and the early ecosystem processes necessary to assist the co-evolution of soil and vegetation. A key question emerges over the extent to which the fresh organic matter deposited in the active zone is capable of significantly transforming the local geochemical environment sufficiently to accelerate soil development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The physicochemical interactions between water, sediment and soil deeply influence the formation and development of the ecosystem. In this research, different freshwater, brackish and saline subaqueous environments of Northern Italy were chosen as study area to investigate the physicochemical processes which occur at the interface between water and sediments, as well as the effects of soil submergence on ecosystem development. In the freshwater system of the Reno river basin, the main purpose was to define the heavy metals hazard in water and sediments of natural and artificial water courses. Heavy metals partitioning and speciation allowed to assess the environmental risk linked to the critical action of dredging canal sediments, for the maintenance of the hydraulic safety of plain lands. In addition, some bioremediation techniques were experimented for protecting sediments from heavy metals contamination, and for giving an answer to the problem of sediments management. In the brackish system of S. Vitale park, the development of hydromorphic and subaqueous soils was investigated. The study of soil profiles highlighted the presence of a soil continuum among pedons subjected to different saturation degrees. This investigation allowed to the identification of both morphological and physicochemical indicators, which characterize the formation of subaqueous soils and describe the soil hydromorphism in transitional soil systems. In the saline system of Grado lagoon, an ecosystem approach was used to define the role of water oscillation in soil characterization and plants colonization. This study highlighted the close relationship and the mutual influence of soil submergence and aeration, tide oscillation and vegetation cover, on the soil development. In view of climate change, this study contribute to understand and suppose how soil and landscape could evolve. However, a complete evaluation of hydromorphic soil functionality will be achieved only involving physiological and biochemical expertise in these kind of studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Western Wright Valley, from Wright Upper Glacier to the western end of the Dais, can be divided into three broad geomorphic regions: the elevated Labyrinth, the narrow Dais which is connected to the Labyrinth, and the North and South forks which are bifurcated by the Dais. Soil associations of Typic Haplorthels/Haploturbels with ice-cemented permafrost at < 70 cm are most common in each of these geomorphic regions. Amongst the Haplo Great Groups are patches of Salic and Typic Anhyorthels with ice-cemented permafrost at > 70 cm. They are developed in situ in strongly weathered drift with very low surface boulder frequency and occur on the upper erosion surface of the Labyrinth and on the Dais. Typic Anhyorthels also occur at lower elevation on sinuous and patchy Wright Upper III drift within the forks. Salic Aquorthels exist only in the South Fork marginal to Don Juan Pond, whereas Salic Haplorthels occur in low areas of both South and North forks where any water table is > 50 cm. Most soils within the study area have an alkaline pH dominated by Na+ and Cl- ions. The low salt accumulation within Haplorthels/Haploturbels may be due to limited depth of soil development and possibly leaching.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To project the future development of the soil organic carbon (SOC) storage in permafrost environments, the spatial and vertical distribution of key soil properties and their landscape controls needs to be understood. This article reports findings from the Arctic Lena River Delta where we sampled 50 soil pedons. These were classified according to the U.S.D.A. Soil Taxonomy and fall mostly into the Gelisol soil order used for permafrost-affected soils. Soil profiles have been sampled for the active layer (mean depth 58±10 cm) and the upper permafrost to one meter depth. We analyze SOC stocks and key soil properties, i.e. C%, N%, C/N, bulk density, visible ice and water content. These are compared for different landscape groupings of pedons according to geomorphology, soil and land cover and for different vertical depth increments. High vertical resolution plots are used to understand soil development. These show that SOC storage can be highly variable with depth. We recommend the treatment of permafrost-affected soils according to subdivisions into: the surface organic layer, mineral subsoil in the active layer, organic enriched cryoturbated or buried horizons and the mineral subsoil in the permafrost. The major geomorphological units of a subregion of the Lena River Delta were mapped with a land form classification using a data-fusion approach of optical satellite imagery and digital elevation data to upscale SOC storage. Landscape mean SOC storage is estimated to 19.2±2.0 kg C/m**2. Our results show that the geomorphological setting explains more soil variability than soil taxonomy classes or vegetation cover. The soils from the oldest, Pleistocene aged, unit of the delta store the highest amount of SOC per m**2 followed by the Holocene river terrace. The Pleistocene terrace affected by thermal-degradation, the recent floodplain and bare alluvial sediments store considerably less SOC in descending order.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Four pedons on each of four drift sheets in the Lake Wellman area of the Darwin Mountains were sampled for chemical and microbial analyses. The four drifts, Hatherton, Britannia, Danum, and Isca, ranged from early Holocene (10 ka) to mid-Quaternary (c. 900 ka). The soil properties of weathering stage, salt stage, and depths of staining, visible salts, ghosts, and coherence increase with drift age. The landforms contain primarily high-centred polygons with windblown snow in the troughs. The soils are dominantly complexes of Typic Haplorthels and Typic Haploturbels. The soils were dry and alkaline with low levels of organic carbon, nitrogen and phosphorus. Electrical conductivity was high accompanied by high levels of water soluble anions and cations (especially calcium and sulphate in older soils). Soil microbial biomass, measured as phospholipid fatty acids, and numbers of culturable heterotrophic microbes, were low, with highest levels detected in less developed soils from the Hatherton drift. The microbial community structure of the Hatherton soil also differed from that of the Britannia, Danum and Isca soils. Ordination revealed the soil microbial community structure was influenced by soil development and organic carbon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salinity levels in soils of the Outer Coastal Plain of Rio Grande do Sul, Brazil, can be high, due to excess of Na in the irrigation water, evapotranspiration and soil development from marine sediments. The cultivation of irrigated rice could be an alternative, since ion uptake as well as leaching by the establishment of a water layer could mitigate the effects of soil salinity. This study aimed to evaluate the dynamics of basic cations in the solution of Albaqualf soils with different salinity levels growing irrigated rice. The plow layer contained exchangeable Na percentages (ESP) of 5.6, 9.0, 21.2 and 32.7 %. The plant stand, dry matter, Na, K and Ca + Mg uptake at full flowering and grain yield were evaluated. The levels of Na, K, Ca + Mg and electrical conductivity (EC) in the soil solution were also measured weekly during the rice cycle at four soil depths, in the water layer and irrigation water. The Na, K and Ca + Mg uptake by rice at full flowering was used to estimate ion depletion from the layer under root influence. Soil salinity induced a reduction in the rice stand, especially in the soil with ESP of 32.7 %, resulting in lower cation uptake and very low yield at that site. As observed in the water layer and irrigation water, the Na, K, Ca + Mg and EC levels in the soil solution decreased with time at depths of 5, 10 and 20 cm, regardless of the original soil salinity, showing that cation dynamics in the plow layer was determined by leaching and root uptake, rather than by the effect of evapoconcentration of basic cations in the soil surface layer.