983 resultados para software validation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Java Memory Model (JMM) provides a semantics of Java multithreading for any implementation platform. The JMM is defined in a declarative fashion with an allowed program execution being defined in terms of existence of "commit sequences" (roughly, the order in which actions in the execution are committed). In this work, we develop OpMM, an operational under-approximation of the JMM. The immediate motivation of this work lies in integrating a formal specification of the JMM with software model checkers. We show how our operational memory model description can be integrated into a Java Path Finder (JPF) style model checker for Java programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: The aim of this study was to compare 2 different methods of assessment of implants at different inclinations (90 degrees and 65 degrees)-with a profilometer and AutoCAD software. Materials and Methods: Impressions (n = 5) of a metal matrix containing 2 implants, 1 at 90 degrees to the surface and 1 at 65 degrees to the surface, were obtained with square impression copings joined together with dental floss splinting covered with autopolymerizing acrylic resin, an open custom tray, and vinyl polysiloxane impression material. Measurement of the angles (in degrees) of the implant analogs were assessed by the same blinded operator with a profilometer and through analysis of digitized images by AutoCAD software. For each implant analog, 3 readings were performed with each method. The results were subjected to a nonparametric Kruskal-Wallis test, with P <= .05 considered significant. Results: For implants perpendicular to the horizontal surface of the specimen (90 degrees), there were no significant differences between the mean measurements obtained with the profilometer (90.04 degrees) and AutoCAD (89.95 degrees; P=.9142). In the analyses of the angled implants at 65 degrees in relation to the horizontal surface of the specimen, significant differences were observed (P=.0472) between the mean readings with the profilometer (65.73 degrees) and AutoCAD (66.25 degrees). Conclusions: The degrees of accuracy of implant angulation recording vary among the techniques available and may vary depending on the angle of the implant. Further investigation is needed to determine the best test conditions and the best measuring technique for determination of the angle of the implant in vitro.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Trabajo realizado en la empresa ULMA Embedded Solutions

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PoliEstudio 1.0 is a computational tool, with free license, created to work with polynomial expressions in one variable and it was created by a team in which the authors of this article are part of. This article documents the qualitative validation performed to this software which main objective was to bring to the Costa Rican Educational System a validated educational software that can solve, partially, the problems that nowadays exists in the mathematic education of secondary students, particularly in the topics related to polynomial expressions in one variable and specifically to those students who are in eighth grade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dynamic analysis is an increasingly important means of supporting software validation and maintenance. To date, developers of dynamic analyses have used low-level instrumentation and debug interfaces to realize their analyses. Many dynamic analyses, however, share multiple common high-level requirements, e.g., capture of program data state as well as events, and efficient and accurate event capture in the presence of threading. We present SOFYA – an infra-structure designed to provide high-level, efficient, concurrency-aware support for building analyses that reason about rich observations of program data and events. It provides a layered, modular architecture, which has been successfully used to rapidly develop and evaluate a variety of demanding dynamic program analyses. In this paper, we describe the SOFYA framework, the challenges it addresses, and survey several such analyses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nearly all biologic tissues exhibit viscoelastic behavior. This behavior is characterized by hysteresis in the response of the material to load or strain. This information can be utilized in extrapolation of life expectancy of vascular implant materials including native tissues and synthetic materials. This behavior is exhibited in many engineering materials as well such as the polymers PTFE, polyamide, polyethylene, etc. While procedures have been developed for evaluating the engineering polymers the techniques for biologic tissues are not as mature. There are multiple reasons for this. A major one is a cultural divide between the medical and engineering communities. Biomedical engineers are beginning to fill that void. A digitally controlled drivetrain designed to evaluate both elastic and viscoelastic characteristics of biologic tissues has been developed. The initial impetus for the development of this device was to evaluate the potential for human umbilical tissue to serve as a vascular graft material. The consequence is that the load frame is configured for membrane type specimens with rectangular dimensions of no more than 25mm per side. The designed load capacity of the drivetrain is to impose an axial load of 40N on the specimen. This drivetrain is capable of assessing the viscoelastic response of the specimens by four different test modes: stress relaxation, creep, harmonic induced oscillations, and controlled strain rate tests. The fluorocarbon PTFE has mechanical properties commensurate with vascular tissue. In fact, it has been used for vascular grafts in patients who have been victims of various traumas. Hardware and software validation of the device was accomplished by testing PTFE and comparing the results to properties that have been published by both researchers and manufacturers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To compare the direct and indirect radiographic methods for assessing the gray levels of biomaterials employing the Digora for Windows and the Adobe Photoshop CS2 systems. METHODS: Specimens of biomaterials were made following manusfacturer's instructions and placed on phosphor storage plates (PSP) and on radiographic film for subsequent gray level assessment using the direct and indirect radiographic method, respectively. The radiographic density of each biomaterial was analyzed using Adobe Photoshop CS2 and Digora for Windows software. RESULTS: The distribution of gray levels found using the direct and indirect methods suggests that higher exposure times are correlated to lower reproducibility rates between groups. CONCLUSION: The indirect method is a feasible alternative to the direct method in assessing the radiographic gray levels of biomaterials, insofar as significant reproducibility was observed between groups for the exposure times of 0.2 to 0.5 seconds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA’s Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), led by the Astronomical Institute of the University of Bern (AIUB), addresses this problem. The goal of the project is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). The In-Orbit Tumbling Analysis tool (ιOTA) is a prototype software, currently in development by Hyperschall Technologie Göttingen GmbH (HTG) within the framework of the project. ιOTA will be a highly modular software tool to perform short-(days), medium-(months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour, magnetic torquer activity and thruster firing. The purpose of ιOTA is to provide high accuracy short-term simulations to support observers and potential ADR missions, as well as medium-and long-term simulations to study the significance of the particular internal and external influences on the attitude, especially damping factors and momentum transfer. The simulation will also enable the investigation of the altitude dependency of the particular external influences. ιOTA's post-processing modules will generate synthetic measurements for observers and for software validation. The validation of the software will be done by cross-calibration with observations and measurements acquired by the project partners.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En el presente Trabajo de Fin de Grado se abordan diferentes aspectos del diseño, implementación y vericación de un sistema de tiempo real de características especiales, el satélite UPMSat-2. Este proyecto, llevado a cabo por un grupo de trabajo formado por profesores, alumnos y personal de la Universidad Politecnica de Madrid (UPM), tiene como objetivo el desarrollo de un microsatélite como plataforma de demostración tecnológica en órbita. Parte de este grupo de trabajo es el Grupo de Sistemas de Tiempo Real y Arquitectura de Servicios Telemáticos (STRAST), del cual el alumno forma parte y que tiene a cargo el diseño e implementación tanto del software de abordo como del software de tierra. Dentro de estas asignaciones, el alumno ha trabajado en tres aspectos principales: el diseño e implementación de diferentes manejadores de dispositivos, el diseño de un algoritmo para la gestión de la memoria no volátil y la configuración y prueba de un sistema de validación de software para un subsistema del satélite. Tanto la memoria de estas tareas como las bases y fundamentos tecnológicos aplicados se desarrollan en el documento. ------------------------------------------------ ----------------------------------------------------------------------------------- Diferent aspects of the design, implementation and validation of an specific Real Time System, the UPMSat-2 satellite, are described in this final report. UPMSat-2 project is aimed at developing an experimental microsatellite that can be used as a technology demonstrator for several research groups at UPM. The Real-Time Systems Group at UPM (STRAST) is responsible for designing and building all the on-board and ground-segment software for the satellite. In relation to this, three main task have been carried out and are described in this document: the design and implementation of three diferent device drivers, the design of an algorithm to manage the nonvolatile memory and the configuration and test of a software validation facility to test the UPMSat-2 Attitude Determination and Control System (ADCS) subsystem. Detailed information of these tasks and their technological basis are presented in the rest of the document.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulate D LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition ru n s its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Administrative or quality improvement registries may or may not contain the elements needed for investigations by trauma researchers. International Classification of Diseases Program for Injury Categorisation (ICDPIC), a statistical program available through Stata, is a powerful tool that can extract injury severity scores from ICD-9-CM codes. We conducted a validation study for use of the ICDPIC in trauma research. METHODS: We conducted a retrospective cohort validation study of 40,418 patients with injury using a large regional trauma registry. ICDPIC-generated AIS scores for each body region were compared with trauma registry AIS scores (gold standard) in adult and paediatric populations. A separate analysis was conducted among patients with traumatic brain injury (TBI) comparing the ICDPIC tool with ICD-9-CM embedded severity codes. Performance in characterising overall injury severity, by the ISS, was also assessed. RESULTS: The ICDPIC tool generated substantial correlations in thoracic and abdominal trauma (weighted κ 0.87-0.92), and in head and neck trauma (weighted κ 0.76-0.83). The ICDPIC tool captured TBI severity better than ICD-9-CM code embedded severity and offered the advantage of generating a severity value for every patient (rather than having missing data). Its ability to produce an accurate severity score was consistent within each body region as well as overall. CONCLUSIONS: The ICDPIC tool performs well in classifying injury severity and is superior to ICD-9-CM embedded severity for TBI. Use of ICDPIC demonstrates substantial efficiency and may be a preferred tool in determining injury severity for large trauma datasets, provided researchers understand its limitations and take caution when examining smaller trauma datasets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: To determine the accuracy of automated vessel-segmentation software for vessel-diameter measurements based on three-dimensional contrast-enhanced magnetic resonance angiography (3D-MRA). METHOD: In 10 patients with high-grade carotid stenosis, automated measurements of both carotid arteries were obtained with 3D-MRA by two independent investigators and compared with manual measurements obtained by digital subtraction angiography (DSA) and 2D maximum-intensity projection (2D-MIP) based on MRA and duplex ultrasonography (US). In 42 patients undergoing carotid endarterectomy (CEA), intraoperative measurements (IOP) were compared with postoperative 3D-MRA and US. RESULTS: Mean interoperator variability was 8% for measurements by DSA and 11% by 2D-MIP, but there was no interoperator variability with the automated 3D-MRA analysis. Good correlations were found between DSA (standard of reference), manual 2D-MIP (rP=0.6) and automated 3D-MRA (rP=0.8). Excellent correlations were found between IOP, 3D-MRA (rP=0.93) and US (rP=0.83). CONCLUSION: Automated 3D-MRA-based vessel segmentation and quantification result in accurate measurements of extracerebral-vessel dimensions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peritoneal transport characteristics and residual renal function require regular control and subsequent adjustment of the peritoneal dialysis (PD) prescription. Prescription models shall facilitate the prediction of the outcome of such adaptations for a given patient. In the present study, the prescription model implemented in the PatientOnLine software was validated in patients requiring a prescription change. This multicenter, international prospective cohort study with the aim to validate a PD prescription model included patients treated with continuous ambulatory peritoneal dialysis. Patients were examined with the peritoneal function test (PFT) to determine the outcome of their current prescription and the necessity for a prescription change. For these patients, a new prescription was modeled using the PatientOnLine software (Fresenius Medical Care, Bad Homburg, Germany). Two to four weeks after implementation of the new PD regimen, a second PFT was performed. The validation of the prescription model included 54 patients. Predicted and measured peritoneal Kt/V were 1.52 ± 0.31 and 1.66 ± 0.35, and total (peritoneal + renal) Kt/V values were 1.96 ± 0.48 and 2.06 ± 0.44, respectively. Predicted and measured peritoneal creatinine clearances were 42.9 ± 8.6 and 43.0 ± 8.8 L/1.73 m2/week and total creatinine clearances were 65.3 ± 26.0 and 63.3 ± 21.8 L/1.73 m2/week, respectively. The analysis revealed a Pearson's correlation coefficient for peritoneal Kt/V of 0.911 and Lin's concordance coefficient of 0.829. The value of both coefficients was 0.853 for peritoneal creatinine clearance. Predicted and measured daily net ultrafiltration was 0.77 ± 0.49 and 1.16 ± 0.63 L/24 h, respectively. Pearson's correlation and Lin's concordance coefficient were 0.518 and 0.402, respectively. Predicted and measured peritoneal glucose absorption was 125.8 ± 38.8 and 79.9 ± 30.7 g/24 h, respectively, and Pearson's correlation and Lin's concordance coefficient were 0.914 and 0.477, respectively. With good predictability of peritoneal Kt/V and creatinine clearance, the present model provides support for individual dialysis prescription in clinical practice. Peritoneal glucose absorption and ultrafiltration are less predictable and are likely to be influenced by additional clinical factors to be taken into consideration.