906 resultados para software quality
Resumo:
A significant proportion of the cost of software development is due to software testing and maintenance. This is in part the result of the inevitable imperfections due to human error, lack of quality during the design and coding of software, and the increasing need to reduce faults to improve customer satisfaction in a competitive marketplace. Given the cost and importance of removing errors improvements in fault detection and removal can be of significant benefit. The earlier in the development process faults can be found, the less it costs to correct them and the less likely other faults are to develop. This research aims to make the testing process more efficient and effective by identifying those software modules most likely to contain faults, allowing testing efforts to be carefully targeted. This is done with the use of machine learning algorithms which use examples of fault prone and not fault prone modules to develop predictive models of quality. In order to learn the numerical mapping between module and classification, a module is represented in terms of software metrics. A difficulty in this sort of problem is sourcing software engineering data of adequate quality. In this work, data is obtained from two sources, the NASA Metrics Data Program, and the open source Eclipse project. Feature selection before learning is applied, and in this area a number of different feature selection methods are applied to find which work best. Two machine learning algorithms are applied to the data - Naive Bayes and the Support Vector Machine - and predictive results are compared to those of previous efforts and found to be superior on selected data sets and comparable on others. In addition, a new classification method is proposed, Rank Sum, in which a ranking abstraction is laid over bin densities for each class, and a classification is determined based on the sum of ranks over features. A novel extension of this method is also described based on an observed polarising of points by class when rank sum is applied to training data to convert it into 2D rank sum space. SVM is applied to this transformed data to produce models the parameters of which can be set according to trade-off curves to obtain a particular performance trade-off.
Resumo:
Social media tools are starting to become mainstream and those working in the software development industry are often ahead of the game in terms of using current technological innovations to improve their work. With the advent of outsourcing and distributed teams the software industry is ideally placed to take advantage of social media technologies, tools and environments. This paper looks at how social media is being used by early adopters within the software development industry. Current tools and trends in social media tool use are described and critiqued: what works and what doesn't. We use industrial case studies from platform development, commercial application development and government contexts which provide a clear picture of the emergent state of the art. These real world experiences are then used to show how working collaboratively in geographically dispersed teams, enabled by social media, can enhance and improve the development experience.
Resumo:
Software metrics are the key tool in software quality management. In this paper, we propose to use support vector machines for regression applied to software metrics to predict software quality. In experiments we compare this method with other regression techniques such as Multivariate Linear Regression, Conjunctive Rule and Locally Weighted Regression. Results on benchmark dataset MIS, using mean absolute error, and correlation coefficient as regression performance measures, indicate that support vector machines regression is a promising technique for software quality prediction. In addition, our investigation of PCA based metrics extraction shows that using the first few Principal Components (PC) we can still get relatively good performance.
Resumo:
Les sociétés modernes dépendent de plus en plus sur les systèmes informatiques et ainsi, il y a de plus en plus de pression sur les équipes de développement pour produire des logiciels de bonne qualité. Plusieurs compagnies utilisent des modèles de qualité, des suites de programmes qui analysent et évaluent la qualité d'autres programmes, mais la construction de modèles de qualité est difficile parce qu'il existe plusieurs questions qui n'ont pas été répondues dans la littérature. Nous avons étudié les pratiques de modélisation de la qualité auprès d'une grande entreprise et avons identifié les trois dimensions où une recherche additionnelle est désirable : Le support de la subjectivité de la qualité, les techniques pour faire le suivi de la qualité lors de l'évolution des logiciels, et la composition de la qualité entre différents niveaux d'abstraction. Concernant la subjectivité, nous avons proposé l'utilisation de modèles bayésiens parce qu'ils sont capables de traiter des données ambiguës. Nous avons appliqué nos modèles au problème de la détection des défauts de conception. Dans une étude de deux logiciels libres, nous avons trouvé que notre approche est supérieure aux techniques décrites dans l'état de l'art, qui sont basées sur des règles. Pour supporter l'évolution des logiciels, nous avons considéré que les scores produits par un modèle de qualité sont des signaux qui peuvent être analysés en utilisant des techniques d'exploration de données pour identifier des patrons d'évolution de la qualité. Nous avons étudié comment les défauts de conception apparaissent et disparaissent des logiciels. Un logiciel est typiquement conçu comme une hiérarchie de composants, mais les modèles de qualité ne tiennent pas compte de cette organisation. Dans la dernière partie de la dissertation, nous présentons un modèle de qualité à deux niveaux. Ces modèles ont trois parties: un modèle au niveau du composant, un modèle qui évalue l'importance de chacun des composants, et un autre qui évalue la qualité d'un composé en combinant la qualité de ses composants. L'approche a été testée sur la prédiction de classes à fort changement à partir de la qualité des méthodes. Nous avons trouvé que nos modèles à deux niveaux permettent une meilleure identification des classes à fort changement. Pour terminer, nous avons appliqué nos modèles à deux niveaux pour l'évaluation de la navigabilité des sites web à partir de la qualité des pages. Nos modèles étaient capables de distinguer entre des sites de très bonne qualité et des sites choisis aléatoirement. Au cours de la dissertation, nous présentons non seulement des problèmes théoriques et leurs solutions, mais nous avons également mené des expériences pour démontrer les avantages et les limitations de nos solutions. Nos résultats indiquent qu'on peut espérer améliorer l'état de l'art dans les trois dimensions présentées. En particulier, notre travail sur la composition de la qualité et la modélisation de l'importance est le premier à cibler ce problème. Nous croyons que nos modèles à deux niveaux sont un point de départ intéressant pour des travaux de recherche plus approfondis.
Resumo:
Research into software engineering teams focuses on human and social team factors. Social psychology deals with the study of team formation and has found that personality factors and group processes such as team climate are related to team effectiveness. However, there are only a handful of empirical studies dealing with personality and team climate and their relationship to software development team effectiveness. Objective We present aggregate results of a twice replicated quasi-experiment that evaluates the relationships between personality, team climate, product quality and satisfaction in software development teams. Method Our experimental study measures the personalities of team members based on the Big Five personality traits (openness, conscientiousness, extraversion, agreeableness, neuroticism) and team climate factors (participative safety, support for innovation, team vision and task orientation) preferences and perceptions. We aggregate the results of the three studies through a meta-analysis of correlations. The study was conducted with students. Results The aggregation of results from the baseline experiment and two replications corroborates the following findings. There is a positive relationship between all four climate factors and satisfaction in software development teams. Teams whose members score highest for the agreeableness personality factor have the highest satisfaction levels. The results unveil a significant positive correlation between the extraversion personality factor and software product quality. High participative safety and task orientation climate perceptions are significantly related to quality. Conclusions First, more efficient software development teams can be formed heeding personality factors like agreeableness and extraversion. Second, the team climate generated in software development teams should be monitored for team member satisfaction. Finally, aspects like people feeling safe giving their opinions or encouraging team members to work hard at their job can have an impact on software quality. Software project managers can take advantage of these factors to promote developer satisfaction and improve the resulting product.
Resumo:
ACM Computing Classification System (1998): D.2.5, D.2.9, D.2.11.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Free and Open Source Software (FOSS) has gained increased interest in the computer software industry, but assessing its quality remains a challenge. FOSS development is frequently carried out by globally distributed development teams, and all stages of development are publicly visible. Several product and process-level quality factors can be measured using the public data. This thesis presents a theoretical background for software quality and metrics and their application in a FOSS environment. Information available from FOSS projects in three information spaces are presented, and a quality model suitable for use in a FOSS context is constructed. The model includes both process and product quality metrics, and takes into account the tools and working methods commonly used in FOSS projects. A subset of the constructed quality model is applied to three FOSS projects, highlighting both theoretical and practical concerns in implementing automatic metric collection and analysis. The experiment shows that useful quality information can be extracted from the vast amount of data available. In particular, projects vary in their growth rate, complexity, modularity and team structure.
Resumo:
Lors de ces dix dernières années, le coût de la maintenance des systèmes orientés objets s'est accru jusqu' à compter pour plus de 70% du coût total des systèmes. Cette situation est due à plusieurs facteurs, parmi lesquels les plus importants sont: l'imprécision des spécifications des utilisateurs, l'environnement d'exécution changeant rapidement et la mauvaise qualité interne des systèmes. Parmi tous ces facteurs, le seul sur lequel nous ayons un réel contrôle est la qualité interne des systèmes. De nombreux modèles de qualité ont été proposés dans la littérature pour contribuer à contrôler la qualité. Cependant, la plupart de ces modèles utilisent des métriques de classes (nombre de méthodes d'une classe par exemple) ou des métriques de relations entre classes (couplage entre deux classes par exemple) pour mesurer les attributs internes des systèmes. Pourtant, la qualité des systèmes par objets ne dépend pas uniquement de la structure de leurs classes et que mesurent les métriques, mais aussi de la façon dont celles-ci sont organisées, c'est-à-dire de leur conception, qui se manifeste généralement à travers les patrons de conception et les anti-patrons. Dans cette thèse nous proposons la méthode DEQUALITE, qui permet de construire systématiquement des modèles de qualité prenant en compte non seulement les attributs internes des systèmes (grâce aux métriques), mais aussi leur conception (grâce aux patrons de conception et anti-patrons). Cette méthode utilise une approche par apprentissage basée sur les réseaux bayésiens et s'appuie sur les résultats d'une série d'expériences portant sur l'évaluation de l'impact des patrons de conception et des anti-patrons sur la qualité des systèmes. Ces expériences réalisées sur 9 grands systèmes libres orientés objet nous permettent de formuler les conclusions suivantes: • Contre l'intuition, les patrons de conception n'améliorent pas toujours la qualité des systèmes; les implantations très couplées de patrons de conception par exemple affectent la structure des classes et ont un impact négatif sur leur propension aux changements et aux fautes. • Les classes participantes dans des anti-atrons sont beaucoup plus susceptibles de changer et d'être impliquées dans des corrections de fautes que les autres classes d'un système. • Un pourcentage non négligeable de classes sont impliquées simultanément dans des patrons de conception et dans des anti-patrons. Les patrons de conception ont un effet positif en ce sens qu'ils atténuent les anti-patrons. Nous appliquons et validons notre méthode sur trois systèmes libres orientés objet afin de démontrer l'apport de la conception des systèmes dans l'évaluation de la qualité.
Resumo:
Software development is an extremely complex process, during which human errors are introduced and result in faulty software systems. It is highly desirable and important that these errors can be prevented and detected as early as possible. Software architecture design is a high-level system description, which embodies many system features and properties that are eventually implemented in the final operational system. Therefore, methods for modeling and analyzing software architecture descriptions can help prevent and reveal human errors and thus improve software quality. Furthermore, if an analyzed software architecture description can be used to derive a partial software implementation, especially when the derivation can be automated, significant benefits can be gained with regard to both the system quality and productivity. This dissertation proposes a framework for an integrated analysis on both of the design and implementation. To ensure the desirable properties of the architecture model, we apply formal verification by using the model checking technique. To ensure the desirable properties of the implementation, we develop a methodology and the associated tool to translate an architecture specification into an implementation written in the combination of Arch-Java/Java/AspectJ programming languages. The translation is semi-automatic so that many manual programming errors can be prevented. Furthermore, the translation inserting monitoring code into the implementation such that runtime verification can be performed, this provides additional assurance for the quality of the implementation. Moreover, validations for the translations from architecture model to program are provided. Finally, several case studies are experimented and presented.
Resumo:
Sustainability in software system is still a new practice that most software developers and companies are trying to incorporate into their software development lifecycle and has been largely discussed in academia. Sustainability is a complex concept viewed from economic, environment and social dimensions with several definitions proposed making sometimes the concept of sustainability very fuzzy and difficult to apply and assess in software systems. This has hindered the adoption of sustainability in the software industry. A little research explores sustainability as a quality property of software products and services to answer questions such as; How to quantify sustainability as a quality construct in the same way as other quality attributes such as security, usability and reliability? How can it be applied to software systems? What are the measures and measurement scale of sustainability? The Goal of this research is to investigate the definitions, perceptions and measurement of sustainability from the quality perspective. Grounded in the general theory of software measurement, the aim is to develop a method that decomposes sustainability in factors, criteria and metrics. The Result is a method to quantify and access sustainability of software systems while incorporating management and users concern. Conclusion: The method will empower the ability of companies to easily adopt sustainability while facilitating its integration to the software development process and tools. It will also help companies to measure sustainability of their software products from economic, environmental, social, individual and technological dimension.
Resumo:
Existing secure software development principles tend to focus on coding vulnerabilities, such as buffer or integer overflows, that apply to individual program statements, or issues associated with the run-time environment, such as component isolation. Here we instead consider software security from the perspective of potential information flow through a program’s object-oriented module structure. In particular, we define a set of quantifiable "security metrics" which allow programmers to quickly and easily assess the overall security of a given source code program or object-oriented design. Although measuring quality attributes of object-oriented programs for properties such as maintainability and performance has been well-covered in the literature, metrics which measure the quality of information security have received little attention. Moreover, existing securityrelevant metrics assess a system either at a very high level, i.e., the whole system, or at a fine level of granularity, i.e., with respect to individual statements. These approaches make it hard and expensive to recognise a secure system from an early stage of development. Instead, our security metrics are based on well-established compositional properties of object-oriented programs (i.e., data encapsulation, cohesion, coupling, composition, extensibility, inheritance and design size), combined with data flow analysis principles that trace potential information flow between high- and low-security system variables. We first define a set of metrics to assess the security quality of a given object-oriented system based on its design artifacts, allowing defects to be detected at an early stage of development. We then extend these metrics to produce a second set applicable to object-oriented program source code. The resulting metrics make it easy to compare the relative security of functionallyequivalent system designs or source code programs so that, for instance, the security of two different revisions of the same system can be compared directly. This capability is further used to study the impact of specific refactoring rules on system security more generally, at both the design and code levels. By measuring the relative security of various programs refactored using different rules, we thus provide guidelines for the safe application of refactoring steps to security-critical programs. Finally, to make it easy and efficient to measure a system design or program’s security, we have also developed a stand-alone software tool which automatically analyses and measures the security of UML designs and Java program code. The tool’s capabilities are demonstrated by applying it to a number of security-critical system designs and Java programs. Notably, the validity of the metrics is demonstrated empirically through measurements that confirm our expectation that program security typically improves as bugs are fixed, but worsens as new functionality is added.
Resumo:
Evaluating the validity of formative variables has presented ongoing challenges for researchers. In this paper we use global criterion measures to compare and critically evaluate two alternative formative measures of System Quality. One model is based on the ISO-9126 software quality standard, and the other is based on a leading information systems research model. We find that despite both models having a strong provenance, many of the items appear to be non-significant in our study. We examine the implications of this by evaluating the quality of the criterion variables we used, and the performance of PLS when evaluating formative models with a large number of items. We find that our respondents had difficulty distinguishing between global criterion variables measuring different aspects of overall System Quality. Also, because formative indicators “compete with one another” in PLS, it may be difficult to develop a set of measures which are all significant for a complex formative construct with a broad scope and a large number of items. Overall, we suggest that there is cautious evidence that both sets of measures are valid and largely equivalent, although questions still remain about the measures, the use of criterion variables, and the use of PLS for this type of model evaluation.