934 resultados para software framework
Resumo:
Effective management of groundwater requires stakeholders to have a realistic conceptual understanding of the groundwater systems and hydrological processes.However, groundwater data can be complex, confusing and often difficult for people to comprehend..A powerful way to communicate understanding of groundwater processes, complex subsurface geology and their relationships is through the use of visualisation techniques to create 3D conceptual groundwater models. In addition, the ability to animate, interrogate and interact with 3D models can encourage a higher level of understanding than static images alone. While there are increasing numbers of software tools available for developing and visualising groundwater conceptual models, these packages are often very expensive and are not readily accessible to majority people due to complexity. .The Groundwater Visualisation System (GVS) is a software framework that can be used to develop groundwater visualisation tools aimed specifically at non-technical computer users and those who are not groundwater domain experts. A primary aim of GVS is to provide management support for agencies, and enhancecommunity understanding.
Resumo:
With the large diffusion of Business Process Managemen (BPM) automation suites, the possibility of managing process-related risks arises. This paper introduces an innovative framework for process-related risk management and describes a working implementation realized by extending the YAWL system. The framework covers three aspects of risk management: risk monitoring, risk prevention, and risk mitigation. Risk monitoring functionality is provided using a sensor-based architecture, where sensors are defined at design time and used at run-time for monitoring purposes. Risk prevention functionality is provided in the form of suggestions about what should be executed, by who, and how, through the use of decision trees. Finally, risk mitigation functionality is provided as a sequence of remedial actions (e.g. reallocating, skipping, rolling back of a work item) that should be executed to restore the process to a normal situation.
Resumo:
Management of groundwater systems requires realistic conceptual hydrogeological models as a framework for numerical simulation modelling, but also for system understanding and communicating this to stakeholders and the broader community. To help overcome these challenges we developed GVS (Groundwater Visualisation System), a stand-alone desktop software package that uses interactive 3D visualisation and animation techniques. The goal was a user-friendly groundwater management tool that could support a range of existing real-world and pre-processed data, both surface and subsurface, including geology and various types of temporal hydrological information. GVS allows these data to be integrated into a single conceptual hydrogeological model. In addition, 3D geological models produced externally using other software packages, can readily be imported into GVS models, as can outputs of simulations (e.g. piezometric surfaces) produced by software such as MODFLOW or FEFLOW. Boreholes can be integrated, showing any down-hole data and properties, including screen information, intersected geology, water level data and water chemistry. Animation is used to display spatial and temporal changes, with time-series data such as rainfall, standing water levels and electrical conductivity, displaying dynamic processes. Time and space variations can be presented using a range of contouring and colour mapping techniques, in addition to interactive plots of time-series parameters. Other types of data, for example, demographics and cultural information, can also be readily incorporated. The GVS software can execute on a standard Windows or Linux-based PC with a minimum of 2 GB RAM, and the model output is easy and inexpensive to distribute, by download or via USB/DVD/CD. Example models are described here for three groundwater systems in Queensland, northeastern Australia: two unconfined alluvial groundwater systems with intensive irrigation, the Lockyer Valley and the upper Condamine Valley, and the Surat Basin, a large sedimentary basin of confined artesian aquifers. This latter example required more detail in the hydrostratigraphy, correlation of formations with drillholes and visualisation of simulation piezometric surfaces. Both alluvial system GVS models were developed during drought conditions to support government strategies to implement groundwater management. The Surat Basin model was industry sponsored research, for coal seam gas groundwater management and community information and consultation. The “virtual” groundwater systems in these 3D GVS models can be interactively interrogated by standard functions, plus production of 2D cross-sections, data selection from the 3D scene, rear end database and plot displays. A unique feature is that GVS allows investigation of time-series data across different display modes, both 2D and 3D. GVS has been used successfully as a tool to enhance community/stakeholder understanding and knowledge of groundwater systems and is of value for training and educational purposes. Projects completed confirm that GVS provides a powerful support to management and decision making, and as a tool for interpretation of groundwater system hydrological processes. A highly effective visualisation output is the production of short videos (e.g. 2–5 min) based on sequences of camera ‘fly-throughs’ and screen images. Further work involves developing support for multi-screen displays and touch-screen technologies, distributed rendering, gestural interaction systems. To highlight the visualisation and animation capability of the GVS software, links to related multimedia hosted online sites are included in the references.
Resumo:
The recent technological advancements and market trends are causing an interesting phenomenon towards the convergence of High-Performance Computing (HPC) and Embedded Computing (EC) domains. On one side, new kinds of HPC applications are being required by markets needing huge amounts of information to be processed within a bounded amount of time. On the other side, EC systems are increasingly concerned with providing higher performance in real-time, challenging the performance capabilities of current architectures. The advent of next-generation many-core embedded platforms has the chance of intercepting this converging need for predictable high-performance, allowing HPC and EC applications to be executed on efficient and powerful heterogeneous architectures integrating general-purpose processors with many-core computing fabrics. To this end, it is of paramount importance to develop new techniques for exploiting the massively parallel computation capabilities of such platforms in a predictable way. P-SOCRATES will tackle this important challenge by merging leading research groups from the HPC and EC communities. The time-criticality and parallelisation challenges common to both areas will be addressed by proposing an integrated framework for executing workload-intensive applications with real-time requirements on top of next-generation commercial-off-the-shelf (COTS) platforms based on many-core accelerated architectures. The project will investigate new HPC techniques that fulfil real-time requirements. The main sources of indeterminism will be identified, proposing efficient mapping and scheduling algorithms, along with the associated timing and schedulability analysis, to guarantee the real-time and performance requirements of the applications.
Resumo:
The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs ""radio-hybrid"" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper considers the problem of building a software architecture for a human-robot team. The objective of the team is to build a multi-attribute map of the world by performing information fusion. A decentralized approach to information fusion is adopted to achieve the system properties of scalability and survivability. Decentralization imposes constraints on the design of the architecture and its implementation. We show how a Component-Based Software Engineering approach can address these constraints. The architecture is implemented using Orca – a component-based software framework for robotic systems. Experimental results from a deployed system comprised of an unmanned air vehicle, a ground vehicle, and two human operators are presented. A section on the lessons learned is included which may be applicable to other distributed systems with complex algorithms. We also compare Orca to the Player software framework in the context of distributed systems.
Resumo:
Os Sistemas de Detecção e Prevenção de Intrusão (Intrusion Detection Systems – IDS e Intrusion Prevention Systems - IPS) são ferramentas bastante conhecidas e bem consagradas no mundo da segurança da informação. Porém, a falta de integração com os equipamentos de rede como switches e roteadores acaba limitando a atuação destas ferramentas e exige um bom dimensionamento de recursos de hardware como processamento, memória e interfaces de rede de alta velocidade, utilizados para implementá-las. Diante de diversas limitações deparadas por pesquisadores e administradores de redes, surgiu o conceito de Rede Definida por Software (Software Defined Network – SDN), que ao separar os planos de controle e de dados, permite adaptar o funcionamento da rede de acordo com as necessidades de cada um. Desta forma, devido à padronização e flexibilidade propostas pelas SDNs, e das limitações apresentadas dos IPSs, esta dissertação de mestrado propõe o IPSFlow, um framework que utiliza uma rede baseada na arquitetura SDN e o protocolo OpenFlow para a criação de um IPS com ampla cobertura e que permite bloquear um tráfego caracterizado pelos IDS(s) como malicioso no equipamento mais próximo da origem. Para validar o framework, experimentos no ambiente virtual Mininet foram realizados utilizando-se o Snort como IDS para analisar tráfego de varredura (scan) gerado pelo Nmap de um host ao outro. Os resultados coletados apresentam que o IPSFlow funcionou conforme planejado ao efetuar o bloqueio de 85% do tráfego de varredura.
Resumo:
Rapid prototyping environments can speed up the research of visual control algorithms. We have designed and implemented a software framework for fast prototyping of visual control algorithms for Micro Aerial Vehicles (MAV). We have applied a combination of a proxy-based network communication architecture and a custom Application Programming Interface. This allows multiple experimental configurations, like drone swarms or distributed processing of a drone's video stream. Currently, the framework supports a low-cost MAV: the Parrot AR.Drone. Real tests have been performed on this platform and the results show comparatively low figures of the extra communication delay introduced by the framework, while adding new functionalities and flexibility to the selected drone. This implementation is open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-FW
Resumo:
We present a new software framework for the implementation of applications that use stencil computations on block-structured grids to solve partial differential equations. A key feature of the framework is the extensive use of automatic source code generation which is used to achieve high performance on a range of leading multi-core processors. Results are presented for a simple model stencil running on Intel and AMD CPUs as well as the NVIDIA GT200 GPU. The generality of the framework is demonstrated through the implementation of a complete application consisting of many different stencil computations, taken from the field of computational fluid dynamics. © 2010 IEEE.
Resumo:
Finding an appropriate turbulence model for a given flow case usually calls for extensive experimentation with both models and numerical solution methods. This work presents the design and implementation of a flexible, programmable software framework for assisting with numerical experiments in computational turbulence. The framework targets Reynolds-averaged Navier-Stokes models, discretized by finite element methods. The novel implementation makes use of Python and the FEniCS package, the combination of which leads to compact and reusable code, where model- and solver-specific code resemble closely the mathematical formulation of equations and algorithms. The presented ideas and programming techniques are also applicable to other fields that involve systems of nonlinear partial differential equations. We demonstrate the framework in two applications and investigate the impact of various linearizations on the convergence properties of nonlinear solvers for a Reynolds-averaged Navier-Stokes model. © 2011 Elsevier Ltd.
Resumo:
Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.
Resumo:
Making use of very detailed neurophysiological, anatomical, and behavioral data to build biologically-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalability, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multi-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions or ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further development of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effectively collaborate using a modern neural simulation platform.
Resumo:
Dascalu, M., Stavarache, L.L., Dessus, P., Trausan-Matu, S., McNamara, D.S., & Bianco, M. (2015). ReaderBench: An Integrated Cohesion-Centered Framework. In G. Conole, T. Klobucar, C. Rensing, J. Konert & É. Lavoué (Eds.), 10th European Conf. on Technology Enhanced Learning (pp. 505–508). Toledo, Spain: Springer.