925 resultados para software engineering practices
Resumo:
The aim of this master’s thesis is to study how Agile method (Scrum) and open source software are utilized to produce software for a flagship product in a complex production environment. The empirical case and the used artefacts are taken from the Nokia MeeGo N9 product program, and from the related software program, called as the Harmattan. The single research case is analysed by using a qualitative method. The Grounded Theory principles are utilized, first, to find out all the related concepts from artefacts. Second, these concepts are analysed, and finally categorized to a core category and six supported categories. The result is formulated as the operation of software practices conceivable in circumstances, where the accountable software development teams and related context accepts a open source software nature as a part of business vision and the whole organization supports the Agile methods.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Requirements-relatedissues have been found the third most important risk factor in software projects and as the biggest reason for software project failures. This is not a surprise since; requirements engineering (RE) practices have been reported deficient inmore than 75% of all; enterprises. A problem analysis on small and low maturitysoftware organizations revealed two; central reasons for not starting process improvement efforts: lack of resources and uncertainty; about process improvementeffort paybacks.; In the constructive part of the study a basic RE method, BaRE, was developed to provide an; easy to adopt way to introduce basic systematic RE practices in small and low maturity; organizations. Based on diffusion of innovations literature, thirteen desirable characteristics; were identified for the solution and the method was implemented in five key components:; requirements document template, requirements development practices, requirements; management practices, tool support for requirements management, and training.; The empirical evaluation of the BaRE method was conducted in three industrial case studies. In; this evaluation, two companies established a completely new RE infrastructure following the; suggested practices while the third company conducted continued requirements document; template development based on the provided template and used it extensively in practice. The; real benefits of the adoption of the method were visible in the companies in four to six months; from the start of the evaluation project, and the two small companies in the project completed; their improvement efforts with an input equal to about one person month. The collected dataon; the case studies indicates that the companies implemented new practices with little adaptations; and little effort. Thus it can be concluded that the constructed BaRE method is indeed easy to; adopt and it can help introduce basic systematic RE practices in small organizations.
Resumo:
Software Engineering Team project introductory lecture and project start up for 2014-2015. it covers team working, infrastructure tools, and an outline of the agile methods, practices and principles that will be used.
Resumo:
Many schools do not begin to introduce college students to software engineering until they have had at least one semester of programming. Since software engineering is a large, complex, and abstract subject it is difficult to construct active learning exercises that build on the students’ elementary knowledge of programming and still teach basic software engineering principles. It is also the case that beginning students typically know how to construct small programs, but they have little experience with the techniques necessary to produce reliable and long-term maintainable modules. I have addressed these two concerns by defining a local standard (Montana Tech Method (MTM) Software Development Standard for Small Modules Template) that step-by-step directs students toward the construction of highly reliable small modules using well known, best-practices software engineering techniques. “Small module” is here defined as a coherent development task that can be unit tested, and can be car ried out by a single (or a pair of) software engineer(s) in at most a few weeks. The standard describes the process to be used and also provides a template for the top-level documentation. The instructional module’s sequence of mini-lectures and exercises associated with the use of this (and other) local standards are used throughout the course, which perforce covers more abstract software engineering material using traditional reading and writing assignments. The sequence of mini-lectures and hands-on assignments (many of which are done in small groups) constitutes an instructional module that can be used in any similar software engineering course.
Resumo:
This paper describes an ongoing collaboration between Boeing Australia Limited and the University of Queensland to develop and deliver an introductory course on software engineering. The aims of the course are to provide a common understanding of the nature of software engineering for all Boeing Australia's engineering staff, and to ensure they understand the practices used throughout the company. The course is designed so that it can be presented to people with varying backgrounds, such as recent software engineering graduates, systems engineers, quality assurance personnel, etc. The paper describes the structure and content of the course, and the evaluation techniques used to collect feedback from the participants and the corresponding results. The immediate feedback on the course indicates that it has been well received by the participants, but also indicates a need for more advanced courses in specific areas. The long-term feedback from participants is less positive, and the long-term feedback from the managers of the course participants indicates a need to expand on the coverage of the Boeing-specific processes and methods. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
This paper describes an ongoing collaboration between Boeing Australia Limited and the University of Queensland to develop and deliver an introductory course on software engineering for Boeing Australia. The aim of the course is to provide a common understanding for all Boeing Australia's engineering staff of the nature of software engineering and the practices used throughout Boeing Australia. It is meant as an introductory course that can be presented to people with varying backgrounds, such as recent software engineering graduates, systems engineers, quality assurance personnel, etc. The paper describes the structure and content of the course, and the evaluation techniques used to collect feedback from the participants and the corresponding results. The course has been well-received by the participants, but the feedback from the course has indicated a need for more advanced courses in specific areas.
Resumo:
Over the past years, component-based software engineering has become an established paradigm in the area of complex software intensive systems. However, many techniques for analyzing these systems for critical properties currently do not make use of the component orientation. In particular, safety analysis of component-based systems is an open field of research. In this chapter we investigate the problems arising and define a set of requirements that apply when adapting the analysis of safety properties to a component-based software engineering process. Based on these requirements some important component-oriented safety evaluation approaches are examined and compared.
Resumo:
This chapter explores the impact of innovation technologies such as simulation, modelling, and rapid prototyping on engineering practice. Innovation technologies help redefine the role of engineers in the innovation process, creating a new division of innovative labour both with and across organizations. This chapter also explores the boundaries of experimentation and inertia within particular domains of problem-solving to create new opportunities and value.
Resumo:
Practical sessions are the backbone of qualification in engineering education. It leads to a better understanding and allows mastering scientific concepts and theories. The lack of the availability of practical sessions at many universities and institutions owing to the cost and the unavailability of instructors the most of the time caused a significant decline in experimentation in engineering education over the last decades. Recently, with the progress of computer-based learning, remote laboratories have been proven to be the best alternative to the traditional ones, regarding to its low cost and ubiquity. Some universities have already started to deploy remote labs in their practical sessions. This contribution compiles diverse experiences based on the deployment of the remote laboratory, Virtual Instrument Systems in Reality (VISIR), on the practices of undergraduate engineering grades at various universities within the VISIR community. It aims to show the impact of its usage on engineering education concerning the assessments of students and teachers as well.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2013
Resumo:
Vaatimusmäärittely on tärkeä vaihe ohjelmistotuotannossa, koska virheelliset ja puutteelliset asiakasvaatimukset vaikuttavat huomattavasti asiakkaan tyytymättömyyteen ohjelmistotuotteessa. Ohjelmistoinsinöörit käyttävät useita erilaisia menetelmiä ja tekniikoita asiakasvaatimusten kartoittamiseen. Erilaisia tekniikoita asiakasvaatimusten keräämiseen on olemassa valtava määrä.Diplomityön tavoitteena oli parantaa asiakasvaatimusten keräämisprosessia ohjelmistoprojekteissa. Asiakasvaatimusten kartoittamiseen käytettävien tekniikoiden arvioinnin perusteella kehitettiin parannettu asiakasvaatimusten keräämisprosessi. Kehitetyn prosessin testaamiseksi ja parantamiseksi järjestettiin ryhmätyöistuntoja liittyen todellisiin ohjelmistokehitysprojekteihin. Tuloksena vaatimusten kerääminen eri sidosryhmiltä nopeutui ja tehostui. Prosessi auttoi muodostamaan yleisen kuvan kehitettävästä ohjelmistosta, prosessin avulla löydettiin paljon ideoita ja prosessi tehosti ideoiden analysointia ja priorisointia. Prosessin suurin kehityskohde oli fasilitaattorin ja osallistujien valmistautumisessa ryhmätyöistuntoihin etukäteen.