982 resultados para software defect
Resumo:
Software faults are expensive and cause serious damage, particularly if discovered late or not at all. Some software faults tend to be hidden. One goal of the thesis is to figure out the status quo in the field of software fault elimination since there are no recent surveys of the whole area. Basis for a structural framework is proposed for this unstructured field, paying attention to compatibility and how to find studies. Bug elimination means are surveyed, including bug knowhow, defect prevention and prediction, analysis, testing, and fault tolerance. The most common research issues for each area are identified and discussed, along with issues that do not get enough attention. Recommendations are presented for software developers, researchers, and teachers. Only the main lines of research are figured out. The main emphasis is on technical aspects. The survey was done by performing searches in IEEE, ACM, Elsevier, and Inspect databases. In addition, a systematic search was done for a few well-known related journals from recent time intervals. Some other journals, some conference proceedings and a few books, reports, and Internet articles have been investigated, too. The following problems were found and solutions for them discussed. Quality assurance is testing only is a common misunderstanding, and many checks are done and some methods applied only in the late testing phase. Many types of static review are almost forgotten even though they reveal faults that are hard to be detected by other means. Other forgotten areas are knowledge of bugs, knowing continuously repeated bugs, and lightweight means to increase reliability. Compatibility between studies is not always good, which also makes documents harder to understand. Some means, methods, and problems are considered method- or domain-specific when they are not. The field lacks cross-field research.
Resumo:
The availability of a huge amount of source code from code archives and open-source projects opens up the possibility to merge machine learning, programming languages, and software engineering research fields. This area is often referred to as Big Code where programming languages are treated instead of natural languages while different features and patterns of code can be exploited to perform many useful tasks and build supportive tools. Among all the possible applications which can be developed within the area of Big Code, the work presented in this research thesis mainly focuses on two particular tasks: the Programming Language Identification (PLI) and the Software Defect Prediction (SDP) for source codes. Programming language identification is commonly needed in program comprehension and it is usually performed directly by developers. However, when it comes at big scales, such as in widely used archives (GitHub, Software Heritage), automation of this task is desirable. To accomplish this aim, the problem is analyzed from different points of view (text and image-based learning approaches) and different models are created paying particular attention to their scalability. Software defect prediction is a fundamental step in software development for improving quality and assuring the reliability of software products. In the past, defects were searched by manual inspection or using automatic static and dynamic analyzers. Now, the automation of this task can be tackled using learning approaches that can speed up and improve related procedures. Here, two models have been built and analyzed to detect some of the commonest bugs and errors at different code granularity levels (file and method levels). Exploited data and models’ architectures are analyzed and described in detail. Quantitative and qualitative results are reported for both PLI and SDP tasks while differences and similarities concerning other related works are discussed.
Resumo:
Objectives: To compare simulated periodontal bone defect depth measured in digital radiographs with dedicated and non-dedicated software systems and to compare the depth measurements from each program with the measurements in dry mandibles.Methods: Forty periodontal bone defects were created at the proximal area of the first premolar in dry pig mandibles. Measurements of the defects were performed with a periodontal probe in the dry mandible. Periapical digital radiographs of the defects were recorded using the Schick sensor in a standardized exposure setting. All images were read using a Schick dedicated software system (CDR DICOM for Windows v.3.5), and three commonly available non-dedicated software systems (Vix Win 2000 v.1.2; Adobe Photoshop 7.0 and Image Tool 3.0). The defects were measured three times in each image and a consensus was reached among three examiners using the four software systems. The difference between the radiographic measurements was analysed using analysis of variance (ANOVA) and by comparing the measurements from each software system with the dry mandibles measurements using Student's t-test.Results: the mean values of the bone defects measured in the radiographs were 5.07 rum, 5.06 rum, 5.01 mm and 5.11 mm for CDR Digital Image and Communication in Medicine (DICOM) for Windows, Vix Win, Adobe Photoshop, and Image Tool, respectively, and 6.67 mm for the dry mandible. The means of the measurements performed in the four software systems were not significantly different, ANOVA (P = 0.958). A significant underestimation of defect depth was obtained when we compared the mean depths from each software system with the dry mandible measurements (t-test; P congruent to 0.000).Conclusions: the periodontal bone defect measurements in dedicated and in three non-dedicated software systems were not significantly different, but they all underestimated the measurements when compared with the measurements obtained in the dry mandibles.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica na Área de Manutenção e Produção
Resumo:
This thesis studies evaluation of software development practices through an error analysis. The work presents software development process, software testing, software errors, error classification and software process improvement methods. The practical part of the work presents results from the error analysis of one software process. It also gives improvement ideas for the project. It was noticed that the classification of the error data was inadequate in the project. Because of this it was impossible to use the error data effectively. With the error analysis we were able to show that there were deficiencies in design and analyzing phases, implementation phase and in testing phase. The work gives ideas for improving error classification and for software development practices.
Resumo:
Les logiciels sont en constante évolution, nécessitant une maintenance et un développement continus. Ils subissent des changements tout au long de leur vie, que ce soit pendant l'ajout de nouvelles fonctionnalités ou la correction de bogues dans le code. Lorsque ces logiciels évoluent, leurs architectures ont tendance à se dégrader avec le temps et deviennent moins adaptables aux nouvelles spécifications des utilisateurs. Elles deviennent plus complexes et plus difficiles à maintenir. Dans certains cas, les développeurs préfèrent refaire la conception de ces architectures à partir du zéro plutôt que de prolonger la durée de leurs vies, ce qui engendre une augmentation importante des coûts de développement et de maintenance. Par conséquent, les développeurs doivent comprendre les facteurs qui conduisent à la dégradation des architectures, pour prendre des mesures proactives qui facilitent les futurs changements et ralentissent leur dégradation. La dégradation des architectures se produit lorsque des développeurs qui ne comprennent pas la conception originale du logiciel apportent des changements au logiciel. D'une part, faire des changements sans comprendre leurs impacts peut conduire à l'introduction de bogues et à la retraite prématurée du logiciel. D'autre part, les développeurs qui manquent de connaissances et–ou d'expérience dans la résolution d'un problème de conception peuvent introduire des défauts de conception. Ces défauts ont pour conséquence de rendre les logiciels plus difficiles à maintenir et évoluer. Par conséquent, les développeurs ont besoin de mécanismes pour comprendre l'impact d'un changement sur le reste du logiciel et d'outils pour détecter les défauts de conception afin de les corriger. Dans le cadre de cette thèse, nous proposons trois principales contributions. La première contribution concerne l'évaluation de la dégradation des architectures logicielles. Cette évaluation consiste à utiliser une technique d’appariement de diagrammes, tels que les diagrammes de classes, pour identifier les changements structurels entre plusieurs versions d'une architecture logicielle. Cette étape nécessite l'identification des renommages de classes. Par conséquent, la première étape de notre approche consiste à identifier les renommages de classes durant l'évolution de l'architecture logicielle. Ensuite, la deuxième étape consiste à faire l'appariement de plusieurs versions d'une architecture pour identifier ses parties stables et celles qui sont en dégradation. Nous proposons des algorithmes de bit-vecteur et de clustering pour analyser la correspondance entre plusieurs versions d'une architecture. La troisième étape consiste à mesurer la dégradation de l'architecture durant l'évolution du logiciel. Nous proposons un ensemble de m´etriques sur les parties stables du logiciel, pour évaluer cette dégradation. La deuxième contribution est liée à l'analyse de l'impact des changements dans un logiciel. Dans ce contexte, nous présentons une nouvelle métaphore inspirée de la séismologie pour identifier l'impact des changements. Notre approche considère un changement à une classe comme un tremblement de terre qui se propage dans le logiciel à travers une longue chaîne de classes intermédiaires. Notre approche combine l'analyse de dépendances structurelles des classes et l'analyse de leur historique (les relations de co-changement) afin de mesurer l'ampleur de la propagation du changement dans le logiciel, i.e., comment un changement se propage à partir de la classe modifiée è d'autres classes du logiciel. La troisième contribution concerne la détection des défauts de conception. Nous proposons une métaphore inspirée du système immunitaire naturel. Comme toute créature vivante, la conception de systèmes est exposée aux maladies, qui sont des défauts de conception. Les approches de détection sont des mécanismes de défense pour les conception des systèmes. Un système immunitaire naturel peut détecter des pathogènes similaires avec une bonne précision. Cette bonne précision a inspiré une famille d'algorithmes de classification, appelés systèmes immunitaires artificiels (AIS), que nous utilisions pour détecter les défauts de conception. Les différentes contributions ont été évaluées sur des logiciels libres orientés objets et les résultats obtenus nous permettent de formuler les conclusions suivantes: • Les métriques Tunnel Triplets Metric (TTM) et Common Triplets Metric (CTM), fournissent aux développeurs de bons indices sur la dégradation de l'architecture. La d´ecroissance de TTM indique que la conception originale de l'architecture s’est dégradée. La stabilité de TTM indique la stabilité de la conception originale, ce qui signifie que le système est adapté aux nouvelles spécifications des utilisateurs. • La séismologie est une métaphore intéressante pour l'analyse de l'impact des changements. En effet, les changements se propagent dans les systèmes comme les tremblements de terre. L'impact d'un changement est plus important autour de la classe qui change et diminue progressivement avec la distance à cette classe. Notre approche aide les développeurs à identifier l'impact d'un changement. • Le système immunitaire est une métaphore intéressante pour la détection des défauts de conception. Les résultats des expériences ont montré que la précision et le rappel de notre approche sont comparables ou supérieurs à ceux des approches existantes.
Resumo:
Les logiciels sont en constante évolution, nécessitant une maintenance et un développement continus. Ils subissent des changements tout au long de leur vie, que ce soit pendant l'ajout de nouvelles fonctionnalités ou la correction de bogues. Lorsque les logiciels évoluent, leurs architectures ont tendance à se dégrader et deviennent moins adaptables aux nouvelles spécifications des utilisateurs. En effet, les architectures de ces logiciels deviennent plus complexes et plus difficiles à maintenir à cause des nombreuses dépendances entre les artefacts. Par conséquent, les développeurs doivent comprendre les dépendances entre les artefacts des logiciels pour prendre des mesures proactives qui facilitent les futurs changements et ralentissent la dégradation des architectures des logiciels. D'une part, le maintien d'un logiciel sans la compréhension des les dépendances entre ses artefacts peut conduire à l'introduction de défauts. D'autre part, lorsque les développeurs manquent de connaissances sur l'impact de leurs activités de maintenance, ils peuvent introduire des défauts de conception, qui ont un impact négatif sur l'évolution du logiciel. Ainsi, les développeurs ont besoin de mécanismes pour comprendre comment le changement d'un artefact impacte le reste du logiciel. Dans cette thèse, nous proposons trois contributions principales : La spécification de deux nouveaux patrons de changement et leurs utilisations pour fournir aux développeurs des informations utiles concernant les dépendances de co-changement. La spécification de la relation entre les patrons d'évolutions des artefacts et les fautes. La découverte de la relation entre les dépendances des anti-patrons et la prédisposition des différentes composantes d'un logiciel aux fautes.
Resumo:
This presentation discusses the role and purpose of testing in the systems/Software Development Life Cycle. We examine the consequences of the 'cost curve' on defect removal and how agile methods can reduce its effects. We concentrate on Black Box Testing and use Equivalence Partitioning and Boundary Value Analysis to construct the smallest number of test cases, test scenarios necessary for a test plan.
Resumo:
Software Repository Mining (MSR) is a research area that analyses software repositories in order to derive relevant information for the research and practice of software engineering. The main goal of repository mining is to extract static information from repositories (e.g. code repository or change requisition system) into valuable information providing a way to support the decision making of software projects. On the other hand, another research area called Process Mining (PM) aims to find the characteristics of the underlying process of business organizations, supporting the process improvement and documentation. Recent works have been doing several analyses through MSR and PM techniques: (i) to investigate the evolution of software projects; (ii) to understand the real underlying process of a project; and (iii) create defect prediction models. However, few research works have been focusing on analyzing the contributions of software developers by means of MSR and PM techniques. In this context, this dissertation proposes the development of two empirical studies of assessment of the contribution of software developers to an open-source and a commercial project using those techniques. The contributions of developers are assessed through three different perspectives: (i) buggy commits; (ii) the size of commits; and (iii) the most important bugs. For the opensource project 12.827 commits and 8.410 bugs have been analyzed while 4.663 commits and 1.898 bugs have been analyzed for the commercial project. Our results indicate that, for the open source project, the developers classified as core developers have contributed with more buggy commits (although they have contributed with the majority of commits), more code to the project (commit size) and more important bugs solved while the results could not indicate differences with statistical significance between developer groups for the commercial project
Resumo:
To quickly localize defects, we want our attention to be focussed on relevant failing tests. We propose to improve defect localization by exploiting dependencies between tests, using a JUnit extension called JExample. In a case study, a monolithic white-box test suite for a complex algorithm is refactored into two traditional JUnit style tests and to JExample. Of the three refactorings, JExample reports five times fewer defect locations and slightly better performance (-8-12\%), while having similar maintenance characteristics. Compared to the original implementation, JExample greatly improves maintainability due the improved factorization following the accepted test quality guidelines. As such, JExample combines the benefits of test chains with test quality aspects of JUnit style testing.
Resumo:
Most empirical disciplines promote the reuse and sharing of datasets, as it leads to greater possibility of replication. While this is increasingly the case in Empirical Software Engineering, some of the most popular bug-fix datasets are now known to be biased. This raises two significants concerns: first, that sample bias may lead to underperforming prediction models, and second, that the external validity of the studies based on biased datasets may be suspect. This issue has raised considerable consternation in the ESE literature in recent years. However, there is a confounding factor of these datasets that has not been examined carefully: size. Biased datasets are sampling only some of the data that could be sampled, and doing so in a biased fashion; but biased samples could be smaller, or larger. Smaller data sets in general provide less reliable bases for estimating models, and thus could lead to inferior model performance. In this setting, we ask the question, what affects performance more? bias, or size? We conduct a detailed, large-scale meta-analysis, using simulated datasets sampled with bias from a high-quality dataset which is relatively free of bias. Our results suggest that size always matters just as much bias direction, and in fact much more than bias direction when considering information-retrieval measures such as AUC and F-score. This indicates that at least for prediction models, even when dealing with sampling bias, simply finding larger samples can sometimes be sufficient. Our analysis also exposes the complexity of the bias issue, and raises further issues to be explored in the future.
Resumo:
Tanto los robots autónomos móviles como los robots móviles remotamente operados se utilizan con éxito actualmente en un gran número de ámbitos, algunos de los cuales son tan dispares como la limpieza en el hogar, movimiento de productos en almacenes o la exploración espacial. Sin embargo, es difícil garantizar la ausencia de defectos en los programas que controlan dichos dispositivos, al igual que ocurre en otros sectores informáticos. Existen diferentes alternativas para medir la calidad de un sistema en el desempeño de las funciones para las que fue diseñado, siendo una de ellas la fiabilidad. En el caso de la mayoría de los sistemas físicos se detecta una degradación en la fiabilidad a medida que el sistema envejece. Esto es debido generalmente a efectos de desgaste. En el caso de los sistemas software esto no suele ocurrir, ya que los defectos que existen en ellos generalmente no han sido adquiridos con el paso del tiempo, sino que han sido insertados en el proceso de desarrollo de los mismos. Si dentro del proceso de generación de un sistema software se focaliza la atención en la etapa de codificación, podría plantearse un estudio que tratara de determinar la fiabilidad de distintos algoritmos, válidos para desempeñar el mismo cometido, según los posibles defectos que pudieran introducir los programadores. Este estudio básico podría tener diferentes aplicaciones, como por ejemplo elegir el algoritmo menos sensible a los defectos, para el desarrollo de un sistema crítico o establecer procedimientos de verificación y validación, más exigentes, si existe la necesidad de utilizar un algoritmo que tenga una alta sensibilidad a los defectos. En el presente trabajo de investigación se ha estudiado la influencia que tienen determinados tipos de defectos software en la fiabilidad de tres controladores de velocidad multivariable (PID, Fuzzy y LQR) al actuar en un robot móvil específico. La hipótesis planteada es que los controladores estudiados ofrecen distinta fiabilidad al verse afectados por similares patrones de defectos, lo cual ha sido confirmado por los resultados obtenidos. Desde el punto de vista de la planificación experimental, en primer lugar se realizaron los ensayos necesarios para determinar si los controladores de una misma familia (PID, Fuzzy o LQR) ofrecían una fiabilidad similar, bajo las mismas condiciones experimentales. Una vez confirmado este extremo, se eligió de forma aleatoria un representante de clase de cada familia de controladores, para efectuar una batería de pruebas más exhaustiva, con el objeto de obtener datos que permitieran comparar de una forma más completa la fiabilidad de los controladores bajo estudio. Ante la imposibilidad de realizar un elevado número de pruebas con un robot real, así como para evitar daños en un dispositivo que generalmente tiene un coste significativo, ha sido necesario construir un simulador multicomputador del robot. Dicho simulador ha sido utilizado tanto en las actividades de obtención de controladores bien ajustados, como en la realización de los diferentes ensayos necesarios para el experimento de fiabilidad. ABSTRACT Autonomous mobile robots and remotely operated robots are used successfully in very diverse scenarios, such as home cleaning, movement of goods in warehouses or space exploration. However, it is difficult to ensure the absence of defects in programs controlling these devices, as it happens in most computer sectors. There exist different quality measures of a system when performing the functions for which it was designed, among them, reliability. For most physical systems, a degradation occurs as the system ages. This is generally due to the wear effect. In software systems, this does not usually happen, and defects often come from system development and not from use. Let us assume that we focus on the coding stage in the software development pro¬cess. We could consider a study to find out the reliability of different and equally valid algorithms, taking into account any flaws that programmers may introduce. This basic study may have several applications, such as choosing the algorithm less sensitive to pro¬gramming defects for the development of a critical system. We could also establish more demanding procedures for verification and validation if we need an algorithm with high sensitivity to programming defects. In this thesis, we studied the influence of certain types of software defects in the reliability of three multivariable speed controllers (PID, Fuzzy and LQR) designed to work in a specific mobile robot. The hypothesis is that similar defect patterns affect differently the reliability of controllers, and it has been confirmed by the results. From the viewpoint of experimental planning, we followed these steps. First, we conducted the necessary test to determine if controllers of the same family (PID, Fuzzy or LQR) offered a similar reliability under the same experimental conditions. Then, a class representative was chosen at ramdom within each controller family to perform a more comprehensive test set, with the purpose of getting data to compare more extensively the reliability of the controllers under study. The impossibility of performing a large number of tests with a real robot and the need to prevent the damage of a device with a significant cost, lead us to construct a multicomputer robot simulator. This simulator has been used to obtain well adjusted controllers and to carry out the required reliability experiments.
Resumo:
An unusual presentation of a focal osteoporotic bone marrow defect (FOBMD) of the mandible mimicking a cystic lesion is documented. A definitive diagnosis could be established only on the basis of the histopathologic evaluation. A 66-year-old Brazilian woman was referred by her dentist for well-defined radiolucency of the mandibular molar region suggesting a cystic lesion of odontogenic origin. The computed tomography scan confirmed that the lesion did not affect the corticals. The biopsy confirmed the diagnosis of FOBMD. The diagnostic difficulty in the current case is obvious, because FOBMD, usually exhibiting an ill-defined radiolucency, is seldom suspected preoperatively when a differential diagnosis is considered for focal well-defined radiolucent areas in the jaws.
Resumo:
This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (-0.11 and -0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p> 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data.