914 resultados para software as teaching tool
Resumo:
ArcTech is a software being developed, applied and improved with the aim of becoming an efficient sensitization tool to support the teaching-learning process of Architecture courses. The application deals initially with the thermal comfort of buildings. The output generated by the software shows if a student is able to produce a pleasant environment, in terms of thermal sensation along a 24-hours period. Although one can find the very same characteristics in fully-developed commercial software, the reason to create ArcTech is related to the flexibility of the system to be adapted by the instructor and also to the need of simple tools for the evaluation of specific topics along the courses. The first part of ArcTech is dedicated to data management and that was developed using the visual programming language Delphi 7 and Firebird as the database management system. The second part contains the parameters that can be changed by the system administrator and those related to project visualization. The interface of the system, in which the student will learn how to implement and to evaluate the project alternatives, was built using Macromedia Flash. The software was applied to undergraduate students revealing its easy-learning and easy-teaching interface.
Resumo:
Software is available, which simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. These dynamic models are based upon equations derived from the transport concepts such as electromigration, diffusion, electroosmosis and imposed hydrodynamic buffer flow that are applied to user-specified initial distributions of analytes and electrolytes. They are able to predict the evolution of electrolyte systems together with associated properties such as pH and conductivity profiles and are as such the most versatile tool to explore the fundamentals of electrokinetic separations and analyses. In addition to revealing the detailed mechanisms of fundamental phenomena that occur in electrophoretic separations, dynamic simulations are useful for educational purposes. This review includes a list of current high-resolution simulators, information on how a simulation is performed, simulation examples for zone electrophoresis, ITP, IEF and EKC and a comprehensive discussion of the applications and achievements.
Resumo:
It was developed a teaching tool in Dermatology for undergraduate medical students, using an interactive website, the Cybertutor. Clinical cases, lectures and updated bibliography were selected. Photographies of dermatological lesions were taken from ambulatory patients. The topics of the lectures were based on the current curriculum of the Federal University of Rio Grande do Sul. The Cybertutor is a dynamic and modern teaching tool, allowing constant innovation.
Resumo:
This paper is studied look at the Teacher’s Assessment of Grammatical Structures (TAGS), Teacher Assessment of Spoken Language (TASL), and Cottage Acquisition Scales for Listening, Language and Speech (CASLLS) criterion-referenced language assessments as well as an inquiry into how teachers of the deaf use the TAGS currently as a teaching tool.
Resumo:
This paper describes some of the preliminary outcomes of a UK project looking at control education. The focus is on two aspects: (i) the most important control concepts and theories for students doing just one or two courses and (ii) the effective use of software to improve student learning and engagement. There is also some discussion of the correct balance between teaching theory and practise. The paper gives examples from numerous UK universities and some industrial comment.
Resumo:
Póster presentado en EDULEARN12, International Conference on Education and New Learning Technologies, Barcelona, 2nd-4th July 2012.
Resumo:
Reverse engineering is the process of discovering the technological principles of a device, object or system through analysis of its structure, function, and operation. From a device used in clinical practice, as the corneal topographer, reverse engineering will be used to infer physical principles and laws. In our case, reverse engineering involves taking this mechanical device apart and analyzing its working detail. The initial knowledge of the application and usefulness of the device provides a motivation that, together with the combination of theory and practice, will help the students to understand and learn concepts studied in different subjects in the Optics and Optometry degree. These subjects belong to both the core and compulsory subjects of the syllabus of first and second year of the degree. Furthermore, the experimental practice is used as transverse axis that relates theoretical concepts, technology transfer and research.
Resumo:
Software Engineering is one of the most widely researched areas of Computer Science. The ability to reuse software, much like reuse of hardware components is one of the key issues in software development. The object-oriented programming methodology is revolutionary in that it promotes software reusability. This thesis describes the development of a tool that helps programmers to design and implement software from within the Smalltalk Environment (an Object- Oriented programming environment). The ASDN tool is part of the PEREAM (Programming Environment for the Reuse and Evolution of Abstract Models) system, which advocates incremental development of software. The Asdn tool along with the PEREAM system seeks to enhance the Smalltalk programming environment by providing facilities for structured development of abstractions (concepts). It produces a document that describes the abstractions that are developed using this tool. The features of the ASDN tool are illustrated by an example.
Resumo:
This thesis project is framed in the research field of Physics Education and aims to contribute to the reflection on the importance of disciplinary identities in addressing interdisciplinarity through the lens of the Nature of Science (NOS). In particular, the study focuses on the module on the parabola and parabolic motion, which was designed within the EU project IDENTITIES. The project aims to design modules to innovate pre-service teacher education according to contemporary challenges, focusing on interdisciplinarity in curricular and STEM topics (especially between physics, mathematics and computer science). The modules are designed according to a model of disciplines and interdisciplinarity that the project IDENTITIES has been elaborating on two main theoretical frameworks: the Family Resemblance Approach (FRA), reconceptualized for the Nature of science (Erduran & Dagher, 2014), and the boundary crossing and boundary objects framework by Akkerman and Bakker (2011). The main aim of the thesis is to explore the impact of this interdisciplinary model in the specific case of the implementation of the parabola and parabolic motion module in a context of preservice teacher education. To reach this purpose, we have analyzed some data collected during the implementation in order to investigate, in particular, the role of the FRA as a learning tool to: a) elaborate on the concept of “discipline”, within the broader problem to define interdisciplinarity; b) compare the epistemic core of physics and mathematics; c) develop epistemic skills and interdisciplinary competences in student-teachers. The analysis of the data led us to recognize three different roles played by the FRA: FRA as epistemological activator, FRA as scaffolding for reasoning and navigating (inhabiting) the complexity, and FRA as lens to investigate the relationship between physics and mathematics in the historical case.
Resumo:
The use of spreadsheet softwares is not widespread in Chemical Education in Brazil as a computational education tool. By its turn the Qualitative Analytical Chemistry is considered a discipline with classical and non-flexible content. Thus in this work the spreadsheet software Excel® was evaluated as a teaching tool in a Qualitative Analytical Chemistry course for calculations of concentrations of the species in equilibrium in solutions of acids. After presenting the theory involved in such calculations the students were invited to elaborate the representation of the distribution of these species in a graphical form, using the spreadsheet software. Then the teaching team evaluated the resulting graphics regarding form and contents. The graphics with conceptual and/or formal errors were returned for correction, revealing significant improvement in the second presentation in all cases. The software showed to be motivating for the content of the discipline, improving the learning interest, while it was possible to prove that even in classical disciplines it is possible to introduce new technologies to help the teaching process.
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics: basic chemical engineering, operability and safety analysis and process control. User experiences from both teachers and students are presented. The benefits of dynamic simulation as an additional teaching tool are discussed and summarized. The experiences confirm that commercial dynamic simulators provide realistic training and can be successfully integrated into undergraduate and graduate teaching, laboratory courses and research. © 2012 The Institution of Chemical Engineers.