939 resultados para snowfall,precipitation,microwave radiative tranfer,RTTOV,precipitation retrieval,satellite
Resumo:
Il lavoro di questa tesi è focalizzato sulla valutazione della sensibilità delle microonde rispetto a differenti idrometeore per le frequenze a 89 GHz e 150 GHz e nella banda di assorbimento del vapor d'acqua a 183.31 GHz. Il metodo di indagine consiste nell'utilizzo del modello di trasferimento radiativo RTTOV (Eyre, 1991) per simulare radianze dei canali dei sensori satellitari nelle microonde Advanced Microwave Sounding Unit-B (AMSU-B) e Microwave Humidity Sounder (MHS). Le simulazioni basate sul modello RTTOV si sono focalizzate su tre dataset indipendenti, forniti da ECMWF. Il primo passo tiene conto di una selezione di categorie dei profili atmosferici basato su una distinzione della fase delle idrometeore, LWP, IWP e WVP, con sottoclassi terra e oceano. La distinzione in diverse categorie permette di valutare la sensibilità di ciascuna frequenza utilizzata nelle simulazioni al variare del contenuto di acqua e ghiaccio. Un secondo approccio è usato per valutare la risposta di ciascuna frequenza nei casi di nevicate sulla terraferma. Questa indagine ha permesso lo sviluppo di un nuovo algoritmo prototipale per la stima dell'intensità di precipitazione nevosa basato su una serie di test a soglia e una equazione di combinazione lineare multipla che sfrutta una combinazione dei canali più sensibili alla snowfall: 150, 186 e 190 GHz. Una prima verifica su casi di studio pre-selezionati di snowstorm sembra fornire risultati promettenti. Infine è stato realizzato uno studio di sensibilità dell’algoritmo 183-WSL (Laviola and Levizzani, 2011) utilizzando le simulazioni di RTTOV con precipitazione/non precipitazione come predittori discreti e con le intensità di precipitazione come predittori continui. Le simulazioni RTTOV rivelano una sovrastima delle radianze in presenza di profili di pioggia e ciò potrebbe essere dovuto alle approssimazioni e parametrizzazioni adottate nel modello RTTOV-SCATT usato per la risoluzione dello scattering in presenza di precipitazione.
Resumo:
The normalised difference vegetation index (NDVI) has evolved as a primary tool for monitoring continental-scale vegetation changes and interpreting the impact of short to long-term climatic events on the biosphere. The objective of this research was to assess the nature of relationships between precipitation and vegetation condition, as measured by the satellite-derived NDVI within South Australia. The correlation, timing and magnitude of the NDVI response to precipitation were examined for different vegetation formations within the State (forest, scrubland, shrubland, woodland and grassland). Results from this study indicate that there are strong relationships between precipitation and NDVI both spatially and temporally within South Australia. Differences in the timing of the NDVI response to precipitation were evident among the five vegetation formations. The most significant relationship between rainfall and NDVI was within the forest formation. Negative correlations between NDVI and precipitation events indicated that vegetation green-up is a result of seasonal patterns in precipitation. Spatial patterns in the average NDVI over the study period closely resembled the boundaries of the five classified vegetation formations within South Australia. Spatial variability within the NDVI data set over the study period differed greatly between and within the vegetation formations examined depending on the location within the state. ACRONYMS AVHRR Advanced Very High Resolution Radiometer ENVSAEnvironments of South Australia EOS Terra-Earth Observing System EVIEnhanced Vegetation Index MODIS Moderate Resolution Imaging Spectro-radiometer MVC Maximum Value Composite NDVINormalised Difference Vegetation Index NIRNear Infra-Red NOAANational Oceanic and Atmospheric Administration SPOT Systeme Pour l’Observation de la Terre. [ABSTRACT FROM AUTHOR]
Resumo:
Ozone profiles from the Microwave Limb Sounder (MLS) onboard the Aura satellite of the NASA's Earth Observing System (EOS) were experimentally added to the European Centre for Medium-range Weather Forecasts (ECMWF) four-dimensional variational (4D-var) data assimilation system of version CY30R1, in which total ozone columns from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) onboard the Envisat satellite and partial profiles from the Solar Backscatter Ultraviolet (SBUV/2) instrument onboard the NOAA-16 satellite have been operationally assimilated. As shown by results for the autumn of 2005, additional constraints from MLS data significantly improved the agreement of the analyzed ozone fields with independent observations throughout most of the stratosphere, owing to the daily near-global coverage and good vertical resolution of MLS observations. The largest impacts were seen in the middle and lower stratosphere, where model deficiencies could not be effectively corrected by the operational observations without the additional information on the ozone vertical distribution provided by MLS. Even in the upper stratosphere, where ozone concentrations are mainly determined by rapid chemical processes, dense and vertically resolved MLS data helped reduce the biases related to model deficiencies. These improvements resulted in a more realistic and consistent description of spatial and temporal variations in stratospheric ozone, as demonstrated by cases in the dynamically and chemically active regions. However, combined assimilation of the often discrepant ozone observations might lead to underestimation of tropospheric ozone. In addition, model deficiencies induced large biases in the upper stratosphere in the medium-range (5-day) ozone forecasts.
Resumo:
Precipitation retrieval over high latitudes, particularly snowfall retrieval over ice and snow, using satellite-based passive microwave spectrometers, is currently an unsolved problem. The challenge results from the large variability of microwave emissivity spectra for snow and ice surfaces, which can mimic, to some degree, the spectral characteristics of snowfall. This work focuses on the investigation of a new snowfall detection algorithm specific for high latitude regions, based on a combination of active and passive sensors able to discriminate between snowing and non snowing areas. The space-borne Cloud Profiling Radar (on CloudSat), the Advanced Microwave Sensor units A and B (on NOAA-16) and the infrared spectrometer MODIS (on AQUA) have been co-located for 365 days, from October 1st 2006 to September 30th, 2007. CloudSat products have been used as truth to calibrate and validate all the proposed algorithms. The methodological approach followed can be summarised into two different steps. In a first step, an empirical search for a threshold, aimed at discriminating the case of no snow, was performed, following Kongoli et al. [2003]. This single-channel approach has not produced appropriate results, a more statistically sound approach was attempted. Two different techniques, which allow to compute the probability above and below a Brightness Temperature (BT) threshold, have been used on the available data. The first technique is based upon a Logistic Distribution to represent the probability of Snow given the predictors. The second technique, defined Bayesian Multivariate Binary Predictor (BMBP), is a fully Bayesian technique not requiring any hypothesis on the shape of the probabilistic model (such as for instance the Logistic), which only requires the estimation of the BT thresholds. The results obtained show that both methods proposed are able to discriminate snowing and non snowing condition over the Polar regions with a probability of correct detection larger than 0.5, highlighting the importance of a multispectral approach.
Resumo:
Current changes in tropical precipitation from satellite data and climate models are assessed. Wet and dry regions of the tropics are defined as the highest 30% and lowest 70% of monthly precipitation values. Observed tropical ocean trends in the wet regime (1.8%/decade) and the dry regions (−2.6%/decade) according to the Global Precipitation Climatology Project (GPCP) over the period including Special Sensor Microwave Imager (SSM/I) data (1988–2008), where GPCP is believed to be more reliable, are of smaller magnitude than when including the entire time series (1979–2008) and closer to model simulations than previous comparisons. Analysing changes in extreme precipitation using daily data within the wet regions, an increase in the frequency of the heaviest 6% of events with warming for the SSM/I observations and model ensemble mean is identified. The SSM/I data indicate an increased frequency of the heaviest events with warming, several times larger than the expected Clausius–Clapeyron scaling and at the upper limit of the substantial range in responses in the model simulations.
Resumo:
This thesis is a comprised of three different projects within the topic of tropical atmospheric dynamics. First, I analyze observations of thermal radiation from Saturn’s atmosphere and from them, determine the latitudinal distribution of ammonia vapor near the 1.5-bar pressure level. The most prominent feature of the observations is the high brightness temperature of Saturn’s subtropical latitudes on either side of the equator. After comparing the observations to a microwave radiative transfer model, I find that these subtropical bands require very low ammonia relative humidity below the ammonia cloud layer in order to achieve the high brightness temperatures observed. We suggest that these bright subtropical bands represent dry zones created by a meridionally overturning circulation.
Second, I use a dry atmospheric general circulation model to study equatorial superrotation in terrestrial atmospheres. A wide range of atmospheres are simulated by varying three parameters: the pole-equator radiative equilibrium temperature contrast, the convective lapse rate, and the planetary rotation rate. A scaling theory is developed that establishes conditions under which superrotation occurs in terrestrial atmospheres. The scaling arguments show that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global-warming simulations.
Third, I use a moist slab-ocean general circulation model to study the impact of a zonally-symmetric continent on the distribution of monsoonal precipitation. I show that adding a hemispheric asymmetry in surface heat capacity is sufficient to cause symmetry breaking in both the spatial and temporal distribution of precipitation. This spatial symmetry breaking can be understood from a large-scale energetic perspective, while the temporal symmetry breaking requires consideration of the dynamical response to the heat capacity asymmetry and the seasonal cycle of insolation. Interestingly, the idealized monsoonal precipitation bears resemblance to precipitation in the Indian monsoon sector, suggesting that this work may provide insight into the causes of the temporally asymmetric distribution of precipitation over southeast Asia.
Resumo:
The s–x model of microwave emission from soil and vegetation layers is widely used to estimate soil moisture content from passive microwave observations. Its application to prospective satellite-based observations aggregating several thousand square kilometres requires understanding of the effects of scene heterogeneity. The effects of heterogeneity in soil surface roughness, soil moisture, water area and vegetation density on the retrieval of soil moisture from simulated single- and multi-angle observing systems were tested. Uncertainty in water area proved the most serious problem for both systems, causing errors of a few percent in soil moisture retrieval. Single-angle retrieval was largely unaffected by the other factors studied here. Multiple-angle retrievals errors around one percent arose from heterogeneity in either soil roughness or soil moisture. Errors of a few percent were caused by vegetation heterogeneity. A simple extension of the model vegetation representation was shown to reduce this error substantially for scenes containing a range of vegetation types.
Resumo:
Measurements of down-welling microwave radiation from raining clouds performed with the Advanced Microwave Radiometer for Rain Identification (ADMIRARI) radiometer at 10.7-21-36.5 GHz during the Global Precipitation Measurement Ground Validation ""Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the Global Precipitation Measurement"" (CHUVA) campaign held in Brazil in March 2010 represent a unique test bed for understanding three-dimensional (3D) effects in microwave radiative transfer processes. While the necessity of accounting for geometric effects is trivial given the slant observation geometry (ADMIRARI was pointing at a fixed 30 elevation angle), the polarization signal (i.e., the difference between the vertical and horizontal brightness temperatures) shows ubiquitousness of positive values both at 21.0 and 36.5 GHz in coincidence with high brightness temperatures. This signature is a genuine and unique microwave signature of radiation side leakage which cannot be explained in a 1D radiative transfer frame but necessitates the inclusion of three-dimensional scattering effects. We demonstrate these effects and interdependencies by analyzing two campaign case studies and by exploiting a sophisticated 3D radiative transfer suited for dichroic media like precipitating clouds.
Resumo:
The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process.
Resumo:
Mode of access: Internet.
Resumo:
TEMPERA (TEMPERature RAdiometer) is a new ground-based radiometer which measures in a frequency range from 51–57 GHz radiation emitted by the atmosphere. With this instrument it is possible to measure temperature profiles from ground to about 50 km. This is the first ground-based instrument with the capability to retrieve temperature profiles simultaneously for the troposphere and stratosphere. The measurement is done with a filterbank in combination with a digital fast Fourier transform spectrometer. A hot load and a noise diode are used as stable calibration sources. The optics consist of an off-axis parabolic mirror to collect the sky radiation. Due to the Zeeman effect on the emission lines used, the maximum height for the temperature retrieval is about 50 km. The effect is apparent in the measured spectra. The performance of TEMPERA is validated by comparison with nearby radiosonde and satellite data from the Microwave Limb Sounder on the Aura satellite. In this paper we present the design and measurement method of the instrument followed by a description of the retrieval method, together with a validation of TEMPERA data over its first year, 2012.
Resumo:
The fourth assessment report of the Intergovernmental Panel on Climate Change (IPCC) includes a comparison of observation-based and modeling-based estimates of the aerosol direct radiative forcing. In this comparison, satellite-based studies suggest a more negative aerosol direct radiative forcing than modeling studies. A previous satellite-based study, part of the IPCC comparison, uses aerosol optical depths and accumulation-mode fractions retrieved by the Moderate Resolution Imaging Spectroradiometer (MODIS) at collection 4. The latest version of MODIS products, named collection 5, improves aerosol retrievals. Using these products, the direct forcing in the shortwave spectrum defined with respect to present-day natural aerosols is now estimated at −1.30 and −0.65 Wm−2 on a global clear-sky and all-sky average, respectively, for 2002. These values are still significantly more negative than the numbers reported by modeling studies. By accounting for differences between present-day natural and preindustrial aerosol concentrations, sampling biases, and investigating the impact of differences in the zonal distribution of anthropogenic aerosols, good agreement is reached between the direct forcing derived from MODIS and the Hadley Centre climate model HadGEM2-A over clear-sky oceans. Results also suggest that satellite estimates of anthropogenic aerosol optical depth over land should be coupled with a robust validation strategy in order to refine the observation-based estimate of aerosol direct radiative forcing. In addition, the complex problem of deriving the aerosol direct radiative forcing when aerosols are located above cloud still needs to be addressed.