70 resultados para snRNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RNA polymerase (pol) II and III human small nuclear RNA (snRNA) genes have very similar promoters and recruit a number of common factors. In particular, both types of promoters utilize the small nuclear RNA activating protein complex (SNAP(c)) and the TATA box binding protein (TBP) for basal transcription, and are activated by Oct-1. We find that SNAP(c) purified from cell lines expressing tagged SNAP(c) subunits is associated with Yin Yang-1 (YY1), a factor implicated in both activation and repression of transcription. Recombinant YY1 accelerates the binding of SNAP(c) to the proximal sequence element, its target within snRNA promoters. Moreover, it enhances the formation of a complex on the pol III U6 snRNA promoter containing all the factors (SNAP(c), TBP, TFIIB-related factor 2 (Brf2), and B double prime 1 (Bdp1)) that are sufficient to direct in vitro U6 transcription when complemented with purified pol III, as well as that of a subcomplex containing TBP, Brf2, and Bdp1. YY1 is found on both the RNA polymerase II U1 and the RNA polymerase III U6 promoters as determined by chromatin immunoprecipitations. Thus, YY1 represents a new factor that participates in transcription complexes formed on both pol II and III promoters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Em eucariotos os íntrons de mRNAs codificantes de proteína são retirados e os éxons são mantidos junto ao transcrito primário pela maquinaria do spliceossomo. Este consiste em um grande complexo RNA-proteína que contém mais de 200 proteínas e cinco tipos de RNAs não codificantes, metabolicamente estáveis, conhecidos como snRNAs U, que incluem U1, U2, U4, U5 e U6. Os genes snRNA U estão presentes em múltiplas cópias dispersas no genoma de diversos eucariotos e parecem apresentar comportamento semelhante aqueles dos elementos móveis exibindo pouca conservação sintênica. No presente trabalho pretendia-se estudar a organização genômica e a localização cromossômica do gene snRNA U1 em espécies de peixes do gênero Leporinus, que é um grupo de peixes que se configura como um modelo interessante para estudo de DNAs repetitivos e evolução genômica em peixes. Porém, após diversas tentativas não foi possível amplificar este gene e então optou-se por estudar o gene snRNA U2. O DNA genômico de diferentes espécies de Leporinus e de Schizodon (grupo próximo evolutivamente) foi amplificado utilizando primers específicos para o gene, por meio da técnica de PCR e os produtos obtidos enviados para o sequenciamento. O tamanho encontrado para essa sequência correspondeu a aproximadamente 200 pb, valor esse já encontrado para outras espécies. As sequências foram analisadas e resultados não concisos das sequencias obtidas não permitiram análises subsequentes. A localização cromossômica do gene foi realizada por meio da técnica de hibridação in situ e as marcações foram evidenciadas em um par cromossômico submetacêntrico de tamanho médio em todas as espécies. A localização destas sequências não mostrou relação com cromossomos sexuais, presentes em algumas das espécies analisadas, mas demonstrou forte evidência de conservação do gene entre as diferentes espécies estudadas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Spinal Muscular Atrophy (SMA), the SMN1 gene is deleted or inactivated. Because of a splicing problem, the second copy gene, SMN2, generates insufficient amounts of functional SMN protein, leading to the death of spinal cord motoneurons. For a "severe" mouse SMA model (Smn -/-, hSMN2 +/+; with affected pups dying at 5-7 days), which most closely mimicks the genetic set-up in human SMA patients, we characterise SMA-related ultrastructural changes in neuromuscular junctions (NMJs) of two striated muscles with discrete functions. In the diaphragm, but not the soleus muscle of 4-days old SMA mice, mitochondria on both sides of the NMJs degenerate, and perisynaptic Schwann cells as well as endoneurial fibroblasts show striking changes in morphology. Importantly, NMJs of SMA mice in which a modified U7 snRNA corrects SMN2 splicing and delays or prevents SMA symptoms are normal. This ultrastructural study reveals novel features of NMJ alterations - in particular the involvement of perisynaptic Schwann cells - that may be relevant for human SMA pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is a lethal hereditary disease caused by homozygous deletion/inactivation of the survival of motoneuron 1 (SMN1) gene. The nearby SMN2 gene, despite its identical coding capacity, is only an incomplete substitute, because a single nucleotide difference impairs the inclusion of its seventh exon in the messenger RNA (mRNA). This splicing defect can be corrected (transiently) by specially designed oligonucleotides. Here we have developed a more permanent correction strategy based on bifunctional U7 small nuclear RNAs (snRNAs). These carry both an antisense sequence that allows specific binding to exon 7 and a splicing enhancer sequence that will improve the recognition of the targeted exon. When expression cassettes for these RNAs are stably introduced into cells, the U7 snRNAs become incorporated into small nuclear ribonucleoprotein (snRNP) particles that will induce a durable splicing correction. We have optimized this strategy to the point that virtually all SMN2 pre-mRNA becomes correctly spliced. In fibroblasts from an SMA patient, this approach induces a prolonged restoration of SMN protein and ensures its correct localization to discrete nuclear foci (gems).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HIV-1 regulatory proteins Tat and Rev are encoded by multiply spliced mRNAs that differ by the use of alternative 3' splice sites at the beginning of the internal exon. If these internal exons are skipped, the expression of these genes, and hence HIV-1 multiplication, should be inhibited. We have previously developed a strategy, based on antisense derivatives of U7 small nuclear RNA, that allows us to induce the skipping of an internal exon in virtually any gene. Here, we have successfully applied this approach to induce a partial skipping of the Tat, Rev (and Nef) internal exons. Three functional U7 constructs were subcloned into a lentiviral vector. Two of them strongly reduced the efficiency of lentiviral particle production compared to vectors carrying either no U7 insert or unrelated U7 cassettes. This defect could be partly or fully compensated by coexpressing Rev from an unspliced mRNA in the producing cell line. Upon stable transduction into CEM-SS or CEM T-lymphocytes, the most efficient of these constructs inhibits HIV-1 multiplication. Although the inhibition is not complete, it is more efficient in combination with another mechanism inhibiting HIV multiplication. Therefore, this new approach targeting HIV-1 regulatory genes at the level of pre-mRNA splicing, in combination with other antiviral strategies, may be a useful new tool in the fight against HIV/AIDS. Copyright (c) 2007 John Wiley & Sons, Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many diseases affect pre-mRNA splicing, and alternative splicing is a major source of proteome diversity and an important mechanism for modulating gene expression. The ability to regulate a specific splicing event is therefore desirable; for example, to understand splicing-associated pathologies. We have developed methods based on modified U7 snRNAs, which allow us to induce efficient skipping or inclusion of selected exons. Here, we have adapted these U7 tools to a regulatable system that relies on a doxycycline-sensitive version of the Kruppel-associated box (KRAB)/KAP1 transcriptional silencing. Co-transduction of target cells with two lentiviral vectors, one carrying the KRAB protein and the other the regulatable U7 cassette, allows a tight regulation of the modified U7 snRNA. No leakage is observed in the repressed state, whereas full induction can be obtained with doxycycline in ng ml(-1) concentrations. Only a few days are necessary for a full switch, and the induction/repression can be repeated over several cycles without noticeable loss of control. Importantly, the U7 expression correlates with splicing correction, as shown for the skipping of an aberrant beta-globin exon created by a thalassaemic mutation and the promotion of exon 7 inclusion in the human SMN2 gene, an important therapeutic target for spinal muscular atrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The U7 snRNA, together with both common and unique snRNP proteins, forms the U7 snRNP particle. This particle is a major component of the 3' processing machinery that converts histone pre-mRNA into mature mRNA in the eukaryotic nucleus. The genes for many snRNAs are present in multiple copies and often have many pseudogenes. Southern blot experiments using U7 oligonucleotide and gene probes have identified only one strongly hybridizing band and three weakly hybridizing bands in mouse genomic DNA. Previously, two laboratories isolated genomic clones encoding one functional U7 gene and three presumed pseudogenes. Since all the genes were isolated on separate, nonoverlapping genomic fragments, the four genes are not tightly clustered in the mouse genome. In this study, we use fluorescence in situ hybridization to determine the chromosomal locations of these clones and their possible linkage to histone loci. Two of the pseudogenes map to mouse Chromosome 1, but are many megabases apart, whereas the active U7 gene maps to Chromosome 6. Possible mechanisms for this localization pattern are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analysed the extent of base-pairing interactions between spacer sequences of histone pre-mRNA and U7 snRNA present in the trans-acting U7 snRNP and their importance for histone RNA 3' end processing in vitro. For the efficiently processed mouse H4-12 gene, a computer analysis revealed that additional base pairs could be formed with U7 RNA outside of the previously recognised spacer element (stem II). One complementarity (stem III) is located more 3' and involves nucleotides from the very 5' end of U7 RNA. The other, more 5' located complementarity (stem I) involves nucleotides of the Sm binding site of U7 RNA, a part known to interact with snRNP structural proteins. These potential stem structures are separated from each other by short internal loops of unpaired nucleotides. Mutational analyses of the pre-mRNA indicate that stems II and III are equally important for interaction with the U7 snRNP and for processing, whereas mutations in stem I have moderate effects on processing efficiency, but do not impair complex formation with the U7 snRNP. Thus nucleotides near the processing site may be important for processing, but do not contribute to the assembly of an active complex by forming a stem I structure. The importance of stem III was confirmed by the ability of a complementary mutation in U7 RNA to suppress a stem III mutation in a complementation assay using Xenopus laevis oocytes. The main role of the factor(s) binding to the upstream hairpin loop is to stabilise the U7-pre-mRNA complex. This was shown by either stabilising (by mutation) or destabilising (by increased temperature) the U7-pre-mRNA base-pairing under conditions where hairpin factor binding was either allowed or prevented (by mutation or competition). The hairpin dependence of processing was found to be inversely related to the strength of the U7-pre-mRNA interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In transient expression studies after DNA transfection of HeLa cells, the mouse U7 gene produces only approximately 30% of the RNA produced by a mouse U1b gene. This difference persists even when the transfected genes have all their 5' and 3' flanking sequences exchanged suggesting a post-transcriptional effect. When the special U7 Sm binding site is mutated to a consensus derived from the major snRNAs (Sm-opt), the U7 RNA level increases 4- to 5-fold, whereas no RNA is detected from a U7 gene with a non-functional Sm binding site (Sm-mut). Moreover, U1b genes with the U7 Sm binding site yield reduced RNA levels. The Sm-opt site also alters the cellular behaviour of the corresponding U7 snRNA. It accumulates to a higher level in the nucleus than wild type U7 RNA, and is better immunoprecipitable with anti-Sm antibodies. Injection experiments in Xenopus oocytes indicate that the U7 genes with either Sm-opt or Sm-mut sites produce similar amounts of RNA as wild type U7, but that they differ in opposing ways in the processing of precursors to mature size U7 snRNA and in nuclear accumulation. However, in reconstitution experiments using Xenopus oocytes, we show that U7 Sm-opt RNA, despite its efficient nuclear accumulation, is not active in 3' processing of histone pre-mRNA, whereas wild type U7 RNA is assembled into functional snRNPs, which correctly process histone pre-mRNA substrate. This suggests a functional importance of the special U7 Sm sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uridine-rich small nuclear RNAs (U snRNAs) play essential roles in eukaryotic gene expression by facilitating the removal of introns from mRNA precursors and the processing of the replication-dependent histone pre-mRNAs. Formation of the 3’ end of these snRNAs is carried out by a poorly characterized, twelve-membered protein complex named Integrator Complex. In the effort to understand Integrator Complex function in the formation of the snRNA 3’ end, we performed a functional RNAi screen in Drosophila S2 cells to identify protein factors required for snRNA 3’ end formation. This screen was conducted by using a fluorescence-based reporter that elicits GFP expression in response to a deficiency in snRNA processing. Besides scoring the known Integrator subunits, we identified Asunder and CG4785 as additional core members of the Integrator Complex. Additionally, we also found a conserved requirement for Cyclin C and Cdk8 in both fly and human snRNA 3’ end processing. We have further demonstrated that the kinase activity of Cdk8 is critical for snRNA 3’ end processing and is likely to function independent of its well-documented function within the Mediator Cdk8 module. Taken together, this work functionally defines the Drosophila Integrator Complex and demonstrates a novel function for Cyclin C/Cdk8 in snRNA 3’ end formation. This thesis work has also characterized an important functional interaction mediated by a microdomain within Integrator subunit 12 (IntS12) and IntS1 that is required for the activity of the Integrator Complex in processing the snRNA 3’ end. Through the development of a reporter-based functional RNAi-rescue assay in Drosophila S2 cells, we analyzed domains within IntS12 required for snRNA 3’ end formation. This analysis unexpectedly revealed that an N-terminal 30 amino acid region and not the highly conserved central PHD finger domain, is required for snRNA 3’ end cleavage. The IntS12 microdomain (1-45) functions autonomously, and is sufficient to interact and stabilize the putative scaffold protein IntS1. Our findings provide more details of the Integrator Complex for understanding the molecular mechanism of snRNA 3’ end processing. Moreover, these results lay the foundation for future studies of the complex through the identification of a novel functional domain within one subunit and the identification of additional subunits.