903 resultados para smooth transition regression model
Resumo:
The significant gains in export market shares made in a number of vulnerable euro-area crisis countries have not been accompanied by an appropriate improvement in price competitiveness. This paper argues that, under certain conditions, firms consider export activity as a substitute for serving domestic demand. The strength of the link between domestic demand and exports is dependent on capacity constraints. Our econometric model for six euro-area countries suggests domestic demand pressure and capacity-constraint restrictions as additional variables of a properly specified export equation. As an innovation to the literature, we assess the empirical significance through the logistic and the exponential variant of the non-linear smooth transition regression model. We find that domestic demand developments are relevant for the short-run dynamics of exports in particular during more extreme stages of the business cycle. A strong substitutive relationship between domestic and foreign sales can most clearly be found for Spain, Portugal and Italy, providing evidence of the importance of sunk costs and hysteresis in international trade.
Resumo:
This paper introduces the smooth transition logit (STL) model that is designed to detect and model situations in which there is structural change in the behaviour underlying the latent index from which the binary dependent variable is constructed. The maximum likelihood estimators of the parameters of the model are derived along with their asymptotic properties, together with a Lagrange multiplier test of the null hypothesis of linearity in the underlying latent index. The development of the STL model is motivated by the desire to assess the impact of deregulation in the Queensland electricity market and ascertain whether increased competition has resulted in significant changes in the behaviour of the spot price of electricity, specifically with respect to the occurrence of periodic abnormally high prices. The model allows the timing of any change to be endogenously determined and also market participants' behaviour to change gradually over time. The main results provide clear evidence in support of a structural change in the nature of price events, and the endogenously determined timing of the change is consistent with the process of deregulation in Queensland.
Resumo:
The goal of this paper is to introduce a class of tree-structured models that combines aspects of regression trees and smooth transition regression models. The model is called the Smooth Transition Regression Tree (STR-Tree). The main idea relies on specifying a multiple-regime parametric model through a tree-growing procedure with smooth transitions among different regimes. Decisions about splits are entirely based on a sequence of Lagrange Multiplier (LM) tests of hypotheses.
Resumo:
Although the link between macroeconomic news announcements and exchange rates is well documented in recent literature, this connection may be unstable. By using a broad set of macroeconomic news announcements and high frequency forex data for the Euro/Dollar, Pound/Dollar and Yen/Dollar from Nov 1, 2004 to Mar 31, 2014, we obtain two major findings with regards to this instability. First, many macroeconomic news announcements exhibit unstable effects with certain patterns in foreign exchange rates. These news effects may change in magnitude and even in their sign over time, over business cycles and crises within distinctive contexts. This finding is robust because the results are obtained by applying a Two-Regime Smooth Transition Regression Model, a Breakpoints Regression Model, and an Efficient Test of Parameter Instability which are all consistent with each other. Second, when we explore the source of this instability, we find that global risks and the reaction by central bank monetary policy to these risks to be possible factors causing this instability.
Resumo:
This thesis investigates how macroeconomic news announcements affect jumps and cojumps in foreign exchange markets, especially under different business cycles. We use 5-min interval from high frequency data on Euro/Dollar, Pound/Dollar and Yen/Dollar from Nov. 1, 2004 to Feb. 28, 2015. The jump detection method was proposed by Andersen et al. (2007c), Lee & Mykland (2008) and then modified by Boudt et al. (2011a) for robustness. Then we apply the two-regime smooth transition regression model of Teräsvirta (1994) to explore news effects under different business cycles. We find that scheduled news related to employment, real activity, forward expectations, monetary policy, current account, price and consumption influences forex jumps, but only FOMC Rate Decisions has consistent effects on cojumps. Speeches given by major central bank officials near a crisis also significantly affect jumps and cojumps. However, the impacts of some macroeconomic news are not the same under different economic states.
Resumo:
The Taylor rule has become one of the most studied strategies for monetary policy. Yet, little is known whether the Federal Reserve follows a non-linear Taylor rule. This paper employs the smooth transition regression model and asks the question: does the Federal Reserve change its policy-rule according to the level of inflation and/or the output gap? I find that the Federal Reserve does follow a non-linear Taylor rule and, more importantly, that the Federal Reserve followed a non-linear Taylor rule during the golden era of monetary policy, 1985-2005, and a linear Taylor rule throughout the dark age of monetary policy, 1960-1979. Thus, good monetary policy is associated with a non-linear Taylor rule: once inflation approaches a certain threshold, the Federal Reserve adjusts its policy-rule and begins to respond more forcefully to inflation.
Resumo:
In this paper, we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new double smooth transition conditional correlation (DSTCC) GARCH model extends the smooth transition conditional correlation (STCC) GARCH model of Silvennoinen and Teräsvirta (2005) by including another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. Applying the model to the stock and bond futures data, we discover that the correlation pattern between them has dramatically changed around the turn of the century. The model is also applied to a selection of world stock indices, and we find evidence for an increasing degree of integration in the capital markets.
Resumo:
In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM–test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of five frequently traded stocks in the S&P 500 stock index completes the paper.
Resumo:
This paper studies a smooth-transition (ST) type cointegration. The proposed ST cointegration allows for regime switching structure in a cointegrated system. It nests the linear cointegration developed by Engle and Granger (1987) and the threshold cointegration studied by Balke and Fomby (1997). We develop F-type tests to examine linear cointegration against ST cointegration in ST-type cointegrating regression models with or without time trends. The null asymptotic distributions of the tests are derived with stationary transition variables in ST cointegrating regression models. And it is shown that our tests have nonstandard limiting distributions expressed in terms of standard Brownian motion when regressors are pure random walks, while have standard asymptotic distributions when regressors contain random walks with nonzero drift. Finite-sample distributions of those tests are studied by Monto Carlo simulations. The small-sample performance of the tests states that our F-type tests have a better power when the system contains ST cointegration than when the system is linearly cointegrated. An empirical example for the purchasing power parity (PPP) data (monthly US dollar, Italy lira and dollar-lira exchange rate from 1973:01 to 1989:10) is illustrated by applying the testing procedures in this paper. It is found that there is no linear cointegration in the system, but there exits the ST-type cointegration in the PPP data.
Resumo:
This paper assesses the extent to which the equity markets of Hungary, Poland the Czech Republic and Russia have become less segmented. Using a variety of tests it is shown there has been a consistent increase in the co-movement of some Eastern European markets and developed markets. Using the variance decompositions from a vector autoregressive representation of returns it is shown that for Poland and Hungary global factors are having an increasing influence on equity returns, suggestive of increased equity market integration. In this paper we model a system of bivariate equity market correlations as a smooth transition logistic trend model in order to establish how rapidly the countries of Eastern Europe are moving away from market segmentation. We find that Hungary is the country which is becoming integrated the most quickly. © 2005 ELsevier Ltd. All rights reserved.
Resumo:
This paper extends the smooth transition conditional correlation model by studying for the first time the impact that illiquidity shocks have on stock market return comovement. We show that firms that experience shocks that increase illiquidity are less liquid than firms that experience shocks that decrease illiquidity. Shocks that increase illiquidity have no statistical impact on comovement. However, shocks that reduce illiquidity lead to a fall in comovement, a pattern that becomes stronger as the illiquidity of the firm increases. This discovery is consistent with increased transparency and an improvement in price efficiency. We find that a small number of firms experience a double illiquidity shock. For these firms, at the first shock, a rise in illiquidity reduces comovement while a fall in illiquidity raises comovement. The second shock partly reverses these changes as a rise in illiquidity is associated with a rise in comovement and a fall in illiquidity is associated with a fall in comovement. These results have important implications for portfolio construction and also for the measurement and evolution of market beta and the cost of capital as it suggests that investors can achieve higher returns for the same amount of market risk because of the greater diversification benefits that exist. We also find that illiquidity, friction, firm size and the pre-shock correlation are all associated with the magnitude of the correlation change. © 2013 Elsevier B.V.
Resumo:
Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006–2011. We are making our model predictions freely available for research.
Resumo:
Large multisite efforts (e.g., the ENIGMA Consortium), have shown that neuroimaging traits including tract integrity (from DTI fractional anisotropy, FA) and subcortical volumes (from T1-weighted scans) are highly heritable and promising phenotypes for discovering genetic variants associated with brain structure. However, genetic correlations (rg) among measures from these different modalities for mapping the human genome to the brain remain unknown. Discovering these correlations can help map genetic and neuroanatomical pathways implicated in development and inherited risk for disease. We use structural equation models and a twin design to find rg between pairs of phenotypes extracted from DTI and MRI scans. When controlling for intracranial volume, the caudate as well as related measures from the limbic system - hippocampal volume - showed high rg with the cingulum FA. Using an unrelated sample and a Seemingly Unrelated Regression model for bivariate analysis of this connection, we show that a multivariate GWAS approach may be more promising for genetic discovery than a univariate approach applied to each trait separately.
Resumo:
Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO3, NO3 and Mg do not change much from coast to inland while, SO4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent (R-2 similar to 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of similar to 5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India. (C) 2008 Elsevier Ltd. All rights reserved.