967 resultados para smooth muscle de-differentiation
Resumo:
Prostatic differentiation during embryogenesis and its further homeostatic state maintenance during adult life depend on androgens. Dihydrotestosterone, which is synthesized from testosterone by 5alpha-reductase (5alpha-r), is the active molecule triggering androgen action within the prostate. In the present work, we examined the effects of 5alpha-reductase inhibition by finasteride in the ventral prostate (VP) of the adult gerbil, employing histochemical and electron microscopy techniques to demonstrate the morphological and organizational changes of the organ. After 10 days of finasteride treatment at a dose of 100 mg/kg/day, the prostatic complex (VP and dorsolateral prostate) absolute weight was reduced to about 18%. The epithelial cells became short and cuboidal, with less secretory blebs and reduced acid phosphatase activity. The luminal sectional area diminished, suggestive of decreased secretory activity. The stromal/epithelial ratio increased, the stroma becoming thicker but less cellular. There was a striking accumulation of collagen fibrils, which was accompanied by an increase in deposits of amorphous granular material adjacent to the basal lamina and in the clefts between smooth muscle cells (SMC). Additionally, the periacinar smooth muscle became loosely packed. Some SMC were atrophic and showed a denser array of the cytoskeleton, whereas other SMC had a highly irregular outline with numerous spine-like projections. The present data indicate that 5alpha-r inhibition causes epithelial and stromal changes by affecting intra-prostatic hormone levels. These alterations are probably the result of an imbalance of the homeostatic interaction between the epithelium and the underlying stroma.
Resumo:
Myocardin (MYOCD), a serum response factor (SRF) transcriptional cofactor, is essential for cardiac and smooth muscle development and differentiation. We show here by array-based comparative genomic hybridization, fluorescence in situ hybridization, and expression analysis approaches that MYOCD gene is highly amplified and overexpressed in human retroperitoneal leiomyosarcomas (LMS), a very aggressive well-differentiated tumor. MYOCD inactivation by shRNA in a human LMS cell line with MYOCD locus amplification leads to a dramatic decrease of smooth muscle differentiation and strongly reduces cell migration. Moreover, forced MYOCD expression in three undifferentiated sarcoma cell lines and in one liposarcoma cell line confers a strong smooth muscle differentiation phenotype and increased migration abilities. Collectively, these results show that human retroperitoneal LMS differentiation is dependent on MYOCD amplification/overexpression, suggesting that in these well-differentiated LMS, differentiation could be a consequence of an acquired genomic alteration. In this hypothesis, these tumors would not necessarily derive from cells initially committed to smooth muscle differentiation. These data also provide new insights on the cellular origin of these sarcomas and on the complex connections between oncogenesis and differentiation in mesenchymal tumors.
Resumo:
The clinical relevance of accurately diagnosing pleomorphic sarcomas has been shown, especially in cases of undifferentiated pleomorphic sarcomas with myogenic differentiation, which appear significantly more aggressive. To establish a new smooth muscle differentiation classification and to test its prognostic value, 412 sarcomas with complex genetics were examined by immunohistochemistry using four smooth muscle markers (calponin, h-caldesmon, transgelin and smooth muscle actin). Two tumor categories were first defined: tumors with positivity for all four markers and tumors with no or incomplete phenotypes. Multivariate analysis demonstrated that this classification method exhibited the strongest prognostic value compared with other prognostic factors, including histological classification. Secondly, incomplete or absent smooth muscle phenotype tumor group was then divided into subgroups by summing for each tumor the labeling intensities of all four markers for each tumors. A subgroup of tumors with an incomplete but strong smooth muscle differentiation phenotype presenting an intermediate metastatic risk was thus identified. Collectively, our results show that the smooth muscle differentiation classification method may be a useful diagnostic tool as well as a relevant prognostic tool for undifferentiated pleomorphic sarcomas.
Resumo:
Rationale: Major coronary vessels derive from the proepicardium, the cellular progenitor of the epicardium, coronary endothelium, and coronary smooth muscle cells (CoSMCs). CoSMCs are delayed in their differentiation relative to coronary endothelial cells (CoEs), such that CoSMCs mature only after CoEs have assembled into tubes. The mechanisms underlying this sequential CoE/CoSMC differentiation are unknown. Retinoic acid (RA) is crucial for vascular development and the main RA-synthesizing enzyme is progressively lost from epicardially derived cells as they differentiate into blood vessel types. In parallel, myocardial vascular endothelial growth factor (VEGF) expression also decreases along coronary vessel muscularization. Objective: We hypothesized that RA and VEGF act coordinately as physiological brakes to CoSMC differentiation. Methods and Results: In vitro assays (proepicardial cultures, cocultures, and RALDH2 [retinaldehyde dehydrogenase-2]/VEGF adenoviral overexpression) and in vivo inhibition of RA synthesis show that RA and VEGF act as repressors of CoSMC differentiation, whereas VEGF biases epicardially derived cell differentiation toward the endothelial phenotype. Conclusion: Experiments support a model in which early high levels of RA and VEGF prevent CoSMC differentiation from epicardially derived cells before RA and VEGF levels decline as an extensive endothelial network is established. We suggest this physiological delay guarantees the formation of a complex, hierarchical, tree of coronary vessels. (Circ Res. 2010;107:204-216.)
Resumo:
We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.
Resumo:
Histone deacetylases (HDACs) have a central role in the regulation of gene expression, which undergoes alternative splicing during embryonic stem cell (ES) cell differentiation. Alternative splicing gives rise to vast diversity over gene information, arousing public concerns in the last decade. In this chapter, we describe a strategy to detect HDAC7 alternative splicing and analyze its function on ES cell differentiation.
Resumo:
Smooth muscle cultures can calcify under certain circumstances. As a model system these cultures therefore provide information on why calcification occurs in atherosclerotic plaques. Whether all smooth muscle cells (under certain conditions), or only specific populations, can produce this mineralization has not been resolved. Demer's group has cloned calcifying vascular cells from subcultured bovine aorta and studied them in detail. They have speculated on whether the cells are smooth muscle which have altered in phenotype, or whether they are derived from a stem cell population within the artery wall. The article argues that while the normal process of smooth muscle phenotypic modulation seen in arterial repair could account for the observations, this view may be two simplistic considering the complex nature of the artery wall. Certainly there is evidence for heterogeneity of smooth muscle cells in the artery wall and recent evidence suggests that stem cells can circulate in the blood and repopulate tissues. Further studies are required to resolve the important question as to the origin of cells which produce mineralization in atheroma.
Resumo:
The aim of this study is to determine whether subpopulations of smooth muscle cells (SMC). as distinguished by variations in contractile and cytoskeletal proteins, appear in the neointima at different times after vascular injury, and/or whether subpopulations develop during serial passaging of these cells. Rat aortae and rabbit carotid arteries were injured with a 2F Fogarty balloon catheter and cultures established from the resulting neointima and the media 2, 6, 12, 16 and 24 weeks later. Cultures were examined at passages 1-5 and subpopulations of SMC categorised by intensity of staining for each protein by immunohistochemistry. Two populations of SMC with different staining intensities ('+ +', '+') were observed for each of the following proteins: alpha -SM actin, SM-myosin, desmin and vimentin. Populations without these proteins were also found. Changes in the percentages of cells expressing these proteins were transitory, indicating that the populations were not limited to a particular tissue (neointima or media), time after injury or passage number. One exception was found in rabbit cultures where the number of desmin-expressing cells quickly decreased with both time after injury and time in culture. Subpopulations of SMC were found at all times after injury in the media and neointima of rat and rabbit arteries, and after multiple passage of these cells. There was no pattern of development of one population suggesting that either no subpopulation has a proliferative or migratory advantage over others, or that only one population exists: that is capable of diverse phenotypic changes. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
When smooth muscle cells are enzyme-dispersed from tissues they lose their original filament architecture and extracellular matrix surrounds. They then reorganize their structural proteins to accommodate a 2-D growth environment when seeded onto culture dishes. The aim of the present study was to determine the expression and reorganization of the structural proteins in rabbit aortic smooth muscle cells seeded into 3-D collagen gel and Matrigel (a basement membrane matrix). It was shown that smooth muscle cells seeded in both gels gradually reorganize their structural proteins into an architecture similar to that of their in vivo counterparts. At the same time, a gradual decrease in levels of smooth muscle-specific contractile proteins (mainly smooth muscle myosin heavy chain-2) and an increase in p-nonmuscle actin occur, independent of both cell growth and extracellular matrix components. Thus, smooth muscle cells in 3-D extracellular matrix culture and in vivo have a similar filament architecture in which the contractile proteins such as actin, myosin, and alpha -actinin are organized into longitudinally arranged myofibrils and the vimentin-containing intermediate filaments form a meshed cytoskeletal network, However, the myofibrils reorganized in vitro contain less smooth muscle-specific and more nonmuscle contractile proteins. (C) 2001 Academic Press.
Resumo:
Abstract Introduction The primary function of the contractile vascular smooth muscle cells (cVSMCs) is the regulation of the vascular contractility which means the adaptation of the vascular tonus in response to the modulation of the blood pressure and blood flow. The cVSMCs are essentially quiescent, and therefore their synthesis rate is very limited. They are characterized by the expression of contractile proteins specific to the muscular tissue including myosin, h-‐caldesmon and <-‐smooth muscle actin (〈-‐SMA). These contractile cells are strongly represented in the media layer of the arterial wall and, in a smaller proportion, of the vein wall. Their typical stretched-‐out morphology allows recognizing them by a histological analysis. They do not produce any extracellular matrix (ECM), and do not migrate through the different layers of the vessel wall, and are not directly involved in the development of intimal hyperplasia (IH). Neointimal formation occurs after endothelial disruption leading to complex molecular and biological mechanisms. The de-‐differentiation of cVSMCs into synthetic VSMCs (sVSMCs) is mentioned as a key element. These non mature cells are able to proliferate and produce ECM. The characterization of the vascular smooth muscle cells (VSMCs) from healthy and stenosed vascular tissues will contribue to the understanding of the different biological processes leading to IH and will be useful for the development of new therapies to interfere with the cVSMCs growth and migration. The aim of our research was to quantify the proportion of cVSMCs and sVSMCs into the healthy and pathologic human blood vessel wall and to characterize their phenotype. Methods We selected 23 specimens of arterial and venous segments from 18 patients. All these specimens were stored in the biobank from the thoracic and vascular surgery departement. 4 groups were designed (group 1 :arteries without lesions (n=3) ;group 2 : veins without lesions (n=1); group 3: arteries with stenosis (n=9); group 4: veins with stenosis (n=10)). Histology: 5µm-‐sections were made from each sample embedded in paraffin wax and further stained with hematoxylin & eosin (HE), Van Gieson's stain (VGEL) and Masson's Trichrome (TMB). Pathologic tissues were defined using the label that was given to the macroscopic samples by the surgeon and also, based on the histological analysis with HE and VGEL evaluating the presence of a thickened intima. The same was done to the control samples evaluating the absence of thickening. Immunohistochemistry : The primary antibodies were used :〈-‐SMA, vimentin, h-‐ caldesmon, calponin, smooth muscle-myosin heavy chain (SM-‐MHC), tropomyosin-‐4, retinol binding protein-‐1 (RBP-‐1), nonmuscle-‐myosin heavy chain-‐B (NM-‐MHC-‐B), Von Willebrand factor (VWF). A semi-‐quantitative assessment of the intensity of each sample stained was performed. Western Blot : Segments of arteries and veins were analyzed using the following primary antibodies :〈-‐SMA, Calponin, SM-‐MHC, NM-‐MHC-‐B. The given results were then normalized with tubulin. Results Our data showed that, when using immunohistochemistry analysis we found that〈-‐SMA was mostly expressed in control arteries, whereas NM-‐MHC-‐B in the pathologic ones. Using SM-‐MHC, calponin, vimentin and caldesmon we found no significative differences in the expression of these proteins in the control and in the pathologic samples. Western Blot analysis showed an inverse correlation between healthy and pathological samples as <-‐ SMA was more expressed in the pathological samples, while NM-‐MHC-‐B in the control group; SM-‐MHC and calponin were mostly expressed in the pathologic samples. Conclusion Our study showed no clear differences between stenotic and control arterial and venous segments using semi-‐quantitative assessement by immunohistochemistry. Western Blot showed a significant increased expression of 〈-‐SMA, calponin and SM-‐MHC in the arteries with stenosis, while NM-‐MHC-‐B was mostly expressed in the arteries without lesions. Further studies are needed to track the lineage of VSMCs to understand the mechanisms leading toIH.
Resumo:
PURPOSE: Small intestinal submucosa is a xenogenic, acellular, collagen rich membrane with inherent growth factors that has previously been shown to promote in vivo bladder regeneration. We evaluate in vitro use of small intestinal submucosa to support the individual and combined growth of bladder urothelial cells and smooth muscle cells for potential use in tissue engineering techniques, and in vitro study of the cellular mechanisms involved in bladder regeneration. MATERIALS AND METHODS: Primary cultures of human bladder urothelial cells and smooth muscle cells were established using standard enzymatic digestion or explant techniques. Cultured cells were then seeded on small intestinal submucosa at a density of 1 x 105 cells per cm.2, incubated and harvested at 3, 7, 14 and 28 days. The 5 separate culture methods evaluated were urothelial cells seeded alone on the mucosal surface of small intestinal submucosa, smooth muscle cells seeded alone on the mucosal surface, layered coculture of smooth muscle cells seeded on the mucosal surface followed by urothelial cells 1 hour later, sandwich coculture of smooth muscle cells seeded on the serosal surface followed by seeding of urothelial cells on the mucosal surface 24 hours later, and mixed coculture of urothelial cells and smooth muscle cells mixed and seeded together on the mucosal surface. Following harvesting at the designated time points small intestinal submucosa cell constructs were formalin fixed and processed for routine histology including Masson trichrome staining. Specific cell growth characteristics were studied with particular attention to cell morphology, cell proliferation and layering, cell sorting, presence of a pseudostratified urothelium and matrix penetrance. To aid in the identification of smooth muscle cells and urothelial cells in the coculture groups, immunohistochemical analysis was performed with antibodies to alpha-smooth muscle actin and cytokeratins AE1/AE3. RESULTS: Progressive 3-dimensional growth of urothelial cells and smooth muscle cells occurred in vitro on small intestinal submucosa. When seeded alone urothelial cells and smooth muscle cells grew in several layers with minimal to no matrix penetration. In contrast, layered, mixed and sandwich coculture methods demonstrated significant enhancement of smooth muscle cell penetration of the membrane. The layered and sandwich coculture techniques resulted in organized cell sorting, formation of a well-defined pseudostratified urothelium and multilayered smooth muscle cells with enhanced matrix penetration. With the mixed coculture technique there was no evidence of cell sorting although matrix penetrance by the smooth muscle cells was evident. Immunohistochemical studies demonstrated that urothelial cells and smooth muscle cells maintain the expression of the phenotypic markers of differentiation alpha-smooth muscle actin and cytokeratins AE1/AE3. CONCLUSIONS: Small intestinal submucosa supports the 3-dimensional growth of human bladder cells in vitro. Successful combined growth of bladder cells on small intestinal submucosa with different seeding techniques has important future clinical implications with respect to tissue engineering technology. The results of our study demonstrate that there are important smooth muscle cell-epithelial cell interactions involved in determining the type of in vitro cell growth that occurs on small intestinal submucosa. Small intestinal submucosa is a valuable tool for in vitro study of the cell-cell and cell-matrix interactions that are involved in regeneration and various disease processes of the bladder.
Resumo:
PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.
Resumo:
Primary cultures of vascular smooth muscle cells (VSMCs) from rats offer a good model system to examine the molecular basis of mechanism of vascular contraction-relaxation. However, during pathological conditions such as atherosclerosis and hypertension, VSMCs characteristically exhibit phenotypic modulation, change from a quiescent contractile to a proliferative synthetic phenotype, which impairs this mechanism of vascular contraction-relaxation. Taking in account that Myosin light chain (MLC) and ERK1/2 directly participate in the process of vascular contraction, the aim of the current study was to analyze the involvement of MLC and ERK1/2 signaling during the process of VSMCs phenotypic modulation. Primary cultures of VSMCs from rat thoracic aortas were isolated and submitted to different number of passages or to freezing condition. Semi-quantitative RT-PCR was used to evaluate the mRNA levels of VSMCs differentiation markers, and western blot assays were used to determine the MLC and ERK1/2 phosphorylation levels during VSMCs phenotypic modulation. Also, immunocytochemical experiments were performed to evaluate morphological alterations occurred during the phenotypic modulation. Elevated number of passages (up to 4) as well as the freezing/thawing process induced a significant phenotypic modulation in VSMCs, which was accompanied by diminished MLC and ERK1/2 phosphorylation levels. Phosphorylation of MLC was suppressed completely by the treatment with a synthetic inhibitor of MEK-1, a direct upstream of ERK1/2, PD98059. These findings provide that ERK1/2-promoted MLC phosphorylation is impaired during VSMCs phenotypic modulation, suggesting that ERK1/2 signaling pathway may represent a potential target for understanding the pathogenesis of several vascular disease processes frequently associated to this condition.
Resumo:
In this study, we evaluated the involvement of rat ventral prostate smooth muscle cells (SMC) in secretory activity and whether this function is modulated after castration. Cell morphology was examined at both light and electron microscopy levels and the organelles involved in secretory function were labeled by the zinc-iodide-osmium (ZIO) method at the ultrastructural level and their volume density was determined by stereology. Castration resulted in marked changes of the SMC, which adopted a spinous aspect and abandoned the layered arrangement observed in the prostates of non-castrated rats. The volume density of ZIO reactive organelles increased progressively after castration, reaching significantly higher levels 21 days after castration, Since previous studies have demonstrated that SMC express SMC markers (even 21 days after castration) and are able to respond to adrenergic stimulation, we concluded that differentiated SMC are able to shift from a predominantly contractile to a more synthetic phenotype without changing their differentiation status. (c) 2005 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effects of partial urethral obstruction on the detrusor muscle of rabbit urinary bladder were investigated using stereological sampling and estimation tools. Twelve female Norfolk rabbits (2.5-3.0 kg body weight) were divided into four groups: 3, 7 and 12 weeks after surgical intervention to produce a standard partial obstruction and unobstructed controls. Following removal, bladder axes (craniocaudal, dorsoventral and laterolateral) and organ weights were recorded. Bladders were prepared for light microscopy by multistage random sampling procedures. Stereological methods were used to estimate the volume of muscle and the packing density and total number of myocyte nuclei in each bladder. We also estimated mean myocyte volume and the mean cross-sectional area and length of myocytes. Group comparisons were made by one-way analysis of variance. Changes in bladder axes were mainly laterolateral and craniocaudal. Mean bladder weight increased roughly six-fold by 3 weeks and 17-fold by 12 weeks and was accompanied, on average, by 12- and 33-fold increases in total muscle volume. These variables did not differ at 3 and 7 weeks post-obstruction. Increases in muscle content were not accompanied by changes in packing densities but were associated with increases in the total numbers of myocyte nuclei (13-fold by 3 weeks, 28-fold by 12 weeks). Mean myocyte volume did not vary significantly between groups but cells in obstructed groups were shorter and wider. These findings support the notion that partial outflow obstruction leads to an increase in the number, but not mean volume, of myocytes. If due solely to myocyte mitosis, the total of 43 x 10(8) cells found at 12 weeks could be generated by the original complement of 15 x 10(7) cells if an average of only 2.1 x 10(6) new cells was produced every hour. In reality, even this modest proliferation rate is unlikely to be achieved because myocyte proliferation rates are very low and it is possible that new myocytes can arise by differentiation of mesenchymal or other precursor cells.