984 resultados para sleep monitoring
Resumo:
Sleep quality and duration are increasingly recognised as being important prognostic parameters in the assessment of an individual's health. However, reliable non-invasive long-term monitoring of sleep in a non-clinical setting remains a challenging problem. This paper describes the validation of a novel under mattress pressure sensing sleep monitoring modality that can be seamlessly integrated into existing home environments and provides a pervasive and distributed solution for monitoring long-term changes in sleep patterns and sleep disorders in adults. 410 minutes of concomitant Under Mattress Bed Sensor (UMBS) and strain gauge data were analysed from eight healthy adults lying passively. In this analysis, customised respirations rate detection algorithms yielded a mean difference of −0.12 breaths per five minutes and a mean percentage error (MPE) of 0.16% when the sensor was placed beneath the mattress. 1,491 minutes of UMBS and video data were recorded simultaneously from four participants in order to assess the movement detection efficacy of customised UMBS algorithms. These algorithms yielded accuracies, sensitivities and specificities of over 90% when compared to a video-based movement detection gold standard. A reduced data set (267 minutes) of wrist actigraphy, the gold standard ambulatory sleep monitor, was recorded. The UMBS was shown to outperform the movement detection ability of wrist actigraphy and has the added advantage of not requiring active subject participation.
Resumo:
Poor sleep is increasingly being recognised as an important prognostic parameter of health. For those with suspected sleep disorders, patients are referred to sleep clinics which guide treatment. However, sleep clinics are not always a viable option due to their high cost, a lack of experienced practitioners, lengthy waiting lists and an unrepresentative sleeping environment. A home-based non-contact sleep/wake monitoring system may be used as a guide for treatment potentially stratifying patients by clinical need or highlighting longitudinal changes in sleep and nocturnal patterns. This paper presents the evaluation of an under-mattress sleep monitoring system for non-contact sleep/wake discrimination. A large dataset of sensor data with concomitant sleep/wake state was collected from both younger and older adults participating in a circadian sleep study. A thorough training/testing/validation procedure was configured and optimised feature extraction and sleep/wake discrimination algorithms evaluated both within and across the two cohorts. An accuracy, sensitivity and specificity of 74.3%, 95.5%, and 53.2% is reported over all subjects using an external validation
dataset (71.9%, 87.9% and 56%, and 77.5%, 98% and 57% is reported for younger and older subjects respectively). These results compare favourably with similar research, however this system provides an ambient alternative suitable for long term continuous sleep monitoring, particularly amongst vulnerable populations.
Resumo:
Imaging studies have shown reduced frontal lobe resources following total sleep deprivation (TSD). The anterior cingulate cortex (ACC) in the frontal region plays a role in performance monitoring and cognitive control; both error detection and response inhibition are impaired following sleep loss. Event-related potentials (ERPs) are an electrophysiological tool used to index the brain's response to stimuli and information processing. In the Flanker task, the error-related negativity (ERN) and error positivity (Pe) ERPs are elicited after erroneous button presses. In a Go/NoGo task, NoGo-N2 and NoGo-P3 ERPs are elicited during high conflict stimulus processing. Research investigating the impact of sleep loss on ERPs during performance monitoring is equivocal, possibly due to task differences, sample size differences and varying degrees of sleep loss. Based on the effects of sleep loss on frontal function and prior research, it was expected that the sleep deprivation group would have lower accuracy, slower reaction time and impaired remediation on performance monitoring tasks, along with attenuated and delayed stimulus- and response-locked ERPs. In the current study, 49 young adults (24 male) were screened to be healthy good sleepers and then randomly assigned to a sleep deprived (n = 24) or rested control (n = 25) group. Participants slept in the laboratory on a baseline night, followed by a second night of sleep or wake. Flanker and Go/NoGo tasks were administered in a battery at 1O:30am (i.e., 27 hours awake for the sleep deprivation group) to measure performance monitoring. On the Flanker task, the sleep deprivation group was significantly slower than controls (p's <.05), but groups did not differ on accuracy. No group differences were observed in post-error slowing, but a trend was observed for less remedial accuracy in the sleep deprived group compared to controls (p = .09), suggesting impairment in the ability to take remedial action following TSD. Delayed P300s were observed in the sleep deprived group on congruent and incongruent Flanker trials combined (p = .001). On the Go/NoGo task, the hit rate (i.e., Go accuracy) was significantly lower in the sleep deprived group compared to controls (p <.001), but no differences were found on false alarm rates (i.e., NoGo Accuracy). For the sleep deprived group, the Go-P3 was significantly smaller (p = .045) and there was a trend for a smaller NoGo-N2 compared to controls (p = .08). The ERN amplitude was reduced in the TSD group compared to controls in both the Flanker and Go/NoGo tasks. Error rate was significantly correlated with the amplitude of response-locked ERNs in control (r = -.55, p=.005) and sleep deprived groups (r = -.46, p = .021); error rate was also correlated with Pe amplitude in controls (r = .46, p=.022) and a trend was found in the sleep deprived participants (r = .39, p =. 052). An exploratory analysis showed significantly larger Pe mean amplitudes (p = .025) in the sleep deprived group compared to controls for participants who made more than 40+ errors on the Flanker task. Altered stimulus processing as indexed by delayed P3 latency during the Flanker task and smaller amplitude Go-P3s during the Go/NoGo task indicate impairment in stimulus evaluation and / or context updating during frontal lobe tasks. ERN and NoGoN2 reductions in the sleep deprived group confirm impairments in the monitoring system. These data add to a body of evidence showing that the frontal brain region is particularly vulnerable to sleep loss. Understanding the neural basis of these deficits in performance monitoring abilities is particularly important for our increasingly sleep deprived society and for safety and productivity in situations like driving and sustained operations.
Resumo:
Objective: To evaluate the systemic blood pressure (BP) during daytime and nighttime in children with sleep breathing disorders (SBD) and compare parameters of BP in children with diagnosis of obstructive sleep apnea syndrome (OSA) to those one with primary snoring (PS).Methods: Children, both genders, aged from 8 to 12 years, with symptoms of SBD realized an overnight polysomnography followed by a 24 h recording of ambulatory BP.Results: All subjects presented with a history of snoring 7 nights per week. Children who have apnea/hipoapnea index >= four or a apnea index >= one presented a mean BP of 93 +/- 7 mmHg and 85 +/- 9 mmHg diurnal and nocturnal respectively whereas children who have a apnea/hipoapnea < four or a apnea index < one presented 90 +/- 7 mmHg and 77 +/- 2 mmHg. Eight children out of fourteen, from OSA group, lost the physiologic nocturnal dipping of the blood pressure. Among OSA children 57% were considered non-dippers. Two (16%) have presented absence of nocturnal dipping among children with primary snoring. The possibility of OSA children loosing physiologic blood pressure dipping was 6.66 higher than the possibilities of patients from PS group.Discussion: Our results indicate that children with sleep apnea syndrome exhibit a higher 24 h blood pressure when compared with those of primary snoring in form of decreased degree of nocturnal dipping and increased levels of diastolic and mean blood pressure, according to previous studies in literature. OSA in children seems to be associated to the development of hypertension or other cardiovascular disease. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background Obstructive sleep apnea (OSA) is common among patients with coronary artery disease. However, OSA remains largely under recognized. The lack of clinical suspicion and difficulties to access full polysomnography (PSG) are limiting factors. The aim of this study was to evaluate, among patients referred to coronary artery bypass grafting (CABG): (i) the prevalence of OSA, (ii) the association of OSA with clinical symptoms, (iii) the performance of overnight unattended portable monitoring (PM) as an alternative method for the diagnosis of OSA. Methods Consecutive patients referred for CABG were evaluated by standard physical evaluation and validated questionnaires (Berlin questionnaire and Epworth Sleepiness Scale) and underwent full PSG and PM (Stardust II). Results We studied 70 consecutive patients (76% men), age 58 +/- 7 years (mean +/- SD), BMI [median (interquartile range)] 27.6 kg/m(2) (25.8-31.1). The prevalence of OSA (full PSG) using an apnea-hypopnea index of at least 5 events/h was 87%. Commonly used clinical traits for the screening of OSA such as the Epworth Sleepiness Scale and neck circumference had low sensitivities to detect OSA. In contrast, the Berlin questionnaire showed a good sensitivity (72%) to detect OSA. PM showed good sensitivity (92%) and specificity (67%) for the diagnosis of OSA. Conclusion OSA is strikingly common among patients referred for CABG. The Berlin questionnaire, but not symptom of excessive daytime sleepiness is a useful tool to screen OSA. PM is useful for the diagnosis of OSA and therefore is an attractive tool for widespread use among patients with coronary artery disease. Coron Artery Dis 23:31-38 (C) 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Objective: To evaluate the systemic blood pressure (BP) during daytime and nighttime in children with sleep breathing disorders (SBD) and compare parameters of BP in children with diagnosis of obstructive sleep apnea syndrome (OSA) to those one with primary snoring (PS). Methods: Children, both genders, aged from 8 to 12 years, with symptoms of SBD realized an overnight polysomnography followed by a 24 h recording of ambulatory BP. Results: All subjects presented with a history of snoring 7 nights per week. Children who have apnea/hipoapnea index >= four or a apnea index >= one presented a mean BP of 93 +/- 7 mmHg and 85 +/- 9 mmHg diurnal and nocturnal respectively whereas children who have a apnea/hipoapnea < four or a apnea index < one presented 90 +/- 7 mmHg and 77 +/- 2 mmHg. Eight children out of fourteen, from OSA group, lost the physiologic nocturnal dipping of the blood pressure. Among OSA children 57% were considered non-dippers. Two (16%) have presented absence of nocturnal dipping among children with primary snoring. The possibility of OSA children loosing physiologic blood pressure dipping was 6.66 higher than the possibilities of patients from PS group. Discussion: Our results indicate that children with sleep apnea syndrome exhibit a higher 24 h blood pressure when compared with those of primary snoring in form of decreased degree of nocturnal dipping and increased levels of diastolic and mean blood pressure, according to previous studies in literature. OSA in children seems to be associated to the development of hypertension or other cardiovascular disease. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background Sleep disorders are very common in the community and are estimated to affect up to 45% of the world’s population. Pharmacists are in a position to give advice and provide appropriate services to individuals who are unable to easily access medical care. The purpose of this study is to develop an intervention to improve the management of sleep disorders in the community. The aims are: (1) to evaluate the effectiveness of a community pharmacy-based intervention in managing sleep disorders; (2) to evaluate the role of actigraph as an objective measure in monitoring certain sleep disorders, and; (3) to evaluate the extended role of community pharmacists in managing sleep disorders. This intervention is developed to monitor individuals undergoing treatment and overcome the difficulties in validating self-reported feedback. Method/design This is a community-based intervention, prospective, controlled trial, with one intervention group and one control group, comparing individuals receiving a structured intervention with those receiving usual care for sleep-related disorders at community pharmacies. Discussion This study will demonstrate the utilisation and efficacy of community pharmacy-based intervention to manage sleep disorders in the community, and will assess the possibility of implementing this intervention into the community pharmacy workflow.