870 resultados para sleep laboratory
Resumo:
Introduction: L’expansion palatine du maxillaire a beaucoup d’effets positifs sur la respiration et la qualité du sommeil, mais peu d'études ont examiné ces données sur des adultes ayant dépassé l’âge permettant de bénéficier d'une expansion palatine conventionnelle. Le but de cette recherche est d’évaluer la stabilité de l’EPRAC (expansion palatine rapide assistée chirurgicalement) et son effet sur les troubles respiratoires après l’ablation des appareils orthodontiques. Méthodes: Neuf patients (Âge moyen 21, entre 16-39 ans) nécessitant une EPRAC ont passé des nuits dans un laboratoire de sommeil, et ce avant l’EPRAC, après l’EPRAC, et après l’ablation des appareils fixes. Les radiographies céphalométriques postéroantérieures ainsi que les modèles d’étude ont été pris pendant ces trois périodes de temps. Résultats: L’analyse des modèles d’étude a démontré une récidive significative au niveau des distances inter-molaires et inter-canines au niveau du maxillaire seulement. Les analyses céphalométriques ont démontré une récidive au niveau de la largeur maxillaire. Aucun changement important n'a été observé dans les stades de sommeil, mais une réduction importante dans l’index de ronflement a été notée. De plus, il y avait moins de changements entre les stades de sommeil. Conclusions: La récidive squelettique est minime et cliniquement non significative. Par contre, les changements dans les distances intermolaires et intercanines sont cliniquement importants. Il semble également qu'une EPRAC ait un effet positif sur la qualité de sommeil par la réduction de l’indice de ronflement ainsi que sur la diminution des changements entre les stades de sommeil.
Resumo:
Recent dose-response sleep restriction studies, in which nightly sleep is curtailed to varying degrees (e.g., 3-, 5-, 7-hours), have found cumulative, dose-dependent changes in sleepiness, mood, and reaction time. However, brain activity has typically not been measured, and attentionbased tests employed tend to be simple (e.g., reaction time). One task addressing the behavioural and electrophysiological aspects of a specific attention mechanism is the Attentional Blink (AB), which shows that the report accuracy of a second target (T2) is impaired when it is presented soon after a first target (Tl). The aim of the present study was to examine behavioural and electrophysioiogical responses to the AB task to elucidate how sleep restriction impacts attentional capacity. Thirty-six young-adults spent four consecutive days and nights in a sleep laboratory where sleep, food, and activity were controlled. Nightly sleep began with a baseline sleep (8 hours), followed by two nights of sleep restriction (3,5 or 8 hours of sleep), and a recovery sleep (8 hours). An AB task was administered each day at 11 am. Results from a basic battery oftests (e.g., sleepiness, mood, reaction time) confirmed the effectiveness of the sleep restriction manipulation. In terms of the AB, baseline performance was typical (Le., T2 accuracy impaired when presented soon after Tl); however, no changes in any AB behavioural measures were observed following sleep restriction for the 3- or 5-hour groups. The only statistically significant electrophysiological result was a decrease in P300 amplitude (for Tl) from baseline to the second sleep restriction night for the 3-hour group. Therefore, following a brief, two night sleep restriction paradigm, brain functioning was impaired for the TI of the AB in the absence of behavioural deficit. Study limitations and future directions are discussed.
Resumo:
Sleep spindles have been found to increase following an intense period of learning on a combination of motor tasks. It is not clear whether these changes are task specific, or a result of learning in general. The current study investigated changes in sleep spindles and spectral power following learning on cognitive procedural (C-PM), simple procedural (S-PM) or declarative (DM) learning tasks. It was hypothesized that S-PM learning would result in increases in Sigma power during Non-REM sleep, whereas C-PM and DM learning would not affect Sigma power. It was also hypothesized that DM learning would increase Theta power during REM sleep, whereas S-PM and C-PM learning would not affect Theta power. Thirty-six participants spent three consecutive nights in the sleep laboratory. Baseline polysomnographic recordings were collected on night 2. Participants were randomly assigned to one of four conditions: C-PM, S-PM, DM or control (C). Memory task training occurred on night 3 followed by polysomnographic recording. Re-testing on respective memory tasks occurred one-week following training. EEG was sampled at 256Hz from 16 sites during sleep. Artifact-free EEG from each sleep stage was submitted to power spectral analysis. The C-PM group made significantly fewer errors, the DM group recalled more, and the S-PM improved on performance from test to re-test. There was a significant night by group interaction for the duration of Stage 2 sleep. Independent t-tests revealed that the S-PM group had significantly more Stage 2 sleep on the test night than the C group. The C-PM and the DM group did not differ from controls in the duration of Stage 2 sleep on test night. There was no significant change in the duration of slow wave sleep (SWS) or REM sleep. Sleep spindle density (spindles/minute) increased significantly from baseline to test night following S-PM learning, but not for C-PM, DM or C groups. This is the first study to have shown that the same pattern of results was found for spindles in SWS. Low Sigma power (12-14Hz) increased significantly during SWS following S-PM learning but not for C-PM, DM or C groups. This effect was maximal at Cz, and the largest increase in Sigma power was at Oz. It was also found that Theta power increased significantly during REM sleep following DM learning, but not for S-PM, C-PM or C groups. This effect was maximal at Cz and the largest change in Theta power was observed at Cz. These findings are consistent with the previous research that simple procedural learning is consolidated during Stage 2 sleep, and provide additional data to suggest that sleep spindles across all non-REM stages and not just Stage 2 sleep may be a mechanism for brain plasticity. This study also provides the first evidence to suggest that Theta activity during REM sleep is involved in memory consolidation.
Resumo:
There is no consensus in the literature about the impact of complete denture wear on obstructive sleep apnea (OSA). The goal of this randomized clinical study was to assess if complete denture wear during sleep interferes with the quality of sleep. Elderly edentulous OSA patients from a complete denture clinic were enrolled and received new complete dentures. An objective sleep analysis was determined with polysomnography performed at the sleep laboratory for all patients who slept either with or without their dentures. Twenty-three patients (74% females) completed the study with a mean age of 69.6 years and a mean body mass index of 26.7 kg/m(2). The apnea and hypopnea index (AHI) was significantly higher when patients slept with dentures compared to without (25.9 +/- 14.8/h vs. 19.9 +/- 10.2/h; p > 0.005). In the mild OSA group, the AHI was significantly higher when patients slept with the dentures (16.6 +/- 6.9 vs. 8.9 +/- 2.4; p < 0.05), while in moderate to severe OSA patients, the AHI was not significantly different when sleeping with dentures (.30.8 +/- 15.6 vs. 25.7 +/- 7.5; p = 0.2). The supine AHI in mild patients was related to a higher increase in AHI while wearing dentures (12.7 +/- 8.4/h vs. 51.9 +/- 28.6/h; p < 0.001). A limitation of the study is that the mild OSA patients had a higher BMI when compared to the moderate to severe OSA patients. Ten out of 14 patients who preferred to sleep with their upper and lower dentures showed an increase in their AHI while wearing dentures to sleep. Contrary to previous studies, we found that OSA patients may experience more apneic events if they sleep with their dentures in place. Specifically, in mild OSAS patients, the use of dentures substantially increases the AHI especially when in the supine position.
Resumo:
Abstract Background Obstructive sleep apnea (OSA) is a respiratory disease characterized by the collapse of the extrathoracic airway and has important social implications related to accidents and cardiovascular risk. The main objective of the present study was to investigate whether the drop in expiratory flow and the volume expired in 0.2 s during the application of negative expiratory pressure (NEP) are associated with the presence and severity of OSA in a population of professional interstate bus drivers who travel medium and long distances. Methods/Design An observational, analytic study will be carried out involving adult male subjects of an interstate bus company. Those who agree to participate will undergo a detailed patient history, physical examination involving determination of blood pressure, anthropometric data, circumference measurements (hips, waist and neck), tonsils and Mallampati index. Moreover, specific questionnaires addressing sleep apnea and excessive daytime sleepiness will be administered. Data acquisition will be completely anonymous. Following the medical examination, the participants will perform a spirometry, NEP test and standard overnight polysomnography. The NEP test is performed through the administration of negative pressure at the mouth during expiration. This is a practical test performed while awake and requires little cooperation from the subject. In the absence of expiratory flow limitation, the increase in the pressure gradient between the alveoli and open upper airway caused by NEP results in an increase in expiratory flow. Discussion Despite the abundance of scientific evidence, OSA is still underdiagnosed in the general population. In addition, diagnostic procedures are expensive, and predictive criteria are still unsatisfactory. Because increased upper airway collapsibility is one of the main determinants of OSA, the response to the application of NEP could be a predictor of this disorder. With the enrollment of this study protocol, the expectation is to encounter predictive NEP values for different degrees of OSA in order to contribute toward an early diagnosis of this condition and reduce its impact and complications among commercial interstate bus drivers.
Resumo:
Sleep-wake disturbances are frequent in patients with Parkinson's disease, but prospective controlled electrophysiological studies of sleep in those patients are surprisingly sparse, and the pathophysiology of sleep-wake disturbances in Parkinson's disease remains largely elusive. In particular, the impact of impaired dopaminergic and hypocretin (orexin) signalling on sleep and wakefulness in Parkinson's disease is still unknown. We performed a prospective, controlled electrophysiological study in patients with early and advanced Parkinson's disease, e.g. in subjects with presumably different levels of dopamine and hypocretin cell loss. We compared sleep laboratory tests and cerebrospinal fluid levels with hypocretin-deficient patients with narcolepsy with cataplexy, and with matched controls. Nocturnal sleep efficiency was most decreased in advanced Parkinson patients, and still lower in early Parkinson patients than in narcolepsy subjects. Excessive daytime sleepiness was most severe in narcolepsy patients. In Parkinson patients, objective sleepiness correlated with decrease of cerebrospinal fluid hypocretin levels, and repeated hypocretin measurements in two Parkinson patients revealed a decrease of levels over years. This suggests that dopamine and hypocretin deficiency differentially affect sleep and wakefulness in Parkinson's disease. Poorer sleep quality is linked to dopamine deficiency and other disease-related factors. Despite hypocretin cell loss in Parkinson's disease being only partial, disturbed hypocretin signalling is likely to contribute to excessive daytime sleepiness in Parkinson patients.
Resumo:
STUDY OBJECTIVE: In healthy subjects, arousability to inspiratory resistive loading is greater during rapid eye movement (REM) sleep compared with non-REM (NREM) sleep but is poorest in REM sleep in patients with sleep apnea. We therefore examined the hypothesis that sleep fragmentation impairs arousability, especially from REM sleep. DESIGN: Two blocks of 3 polysomnographies (separated by at least 1 week) were performed randomly. An inspiratory-loaded night followed either 2 undisturbed control nights (LN(C)) or 2 acoustically fragmented nights (LN(F)) SETTING: Sleep laboratory. PARTICIPANTS: Sixteen healthy men aged 20 to 29 years. INTERVENTIONS: In both loaded nights, an inspiratory resistive load was added via a valved facemask every 2 minutes during sleep and turned off either when arousal occurred or after 2 minutes. MEASUREMENTS AND RESULTS: During LN(F), arousability remained significantly greater in REM sleep (71% aroused within 2 minutes) compared with stage 2 (29%) or stage 3/4 (16%) sleep. After sleep fragmentation, arousability was decreased in stage 2 sleep (LN(F): 29%; LN(C): 38%; p < .05) and low in early REM sleep, increasing across the night (p < .01). In stage 3/4 sleep, neither an attenuation nor a change across the night was seen after sleep fragmentation. CONCLUSIONS: Mild sleep fragmentation is already sufficient to attenuate arousability in stage 2 sleep and to decrease arousability in early, compared with late, REM sleep. This means that sleep fragmentation affects the arousal response to increasing resistance and that the effects are different in stage 2 and REM sleep. The biologic reason for this increase in the arousal response in REM sleep across the night is not clear.
Resumo:
STUDY OBJECTIVES: Periodic leg movements in sleep (PLMS) are frequently accompanied by arousals and autonomic activation, but the pathophysiologic significance of these manifestations is unclear. DESIGN: Changes in heart rate variability (HRV), HRV spectra, and electroencephalogram (EEG) spectra associated with idiopathic PLMS were compared with changes associated with isolated leg movements and respiratory-related leg movements during sleep. Furthermore, correlations between electromyographic activity, HRV changes, and EEG changes were assessed. SETTING: Sleep laboratory. PATIENTS: Whole-night polysomnographic studies of 24 subjects fulfilling the criteria of either periodic leg movements disorder (n = 8), obstructive sleep apnea syndrome (n = 7), or normal polysomnography (n = 9) were used. MEASUREMENTS AND RESULTS: Spectral HRV changes started before all EEG changes and up to 6 seconds before the onset of all types of leg movements. An initial weak autonomic activation was followed by a sympathetic activation, an increase of EEG delta activity, and finally a progression to increased higher-frequency EEG rhythms. After movement onset, HRV indicated a vagal activation, and, the EEG, a decrease in spindle activity. Sympathetic activation, as measured by HRV spectra, was greater for PLMS than for all other movement types. In EEG, gamma synchronization began 1 to 2 seconds earlier for isolated leg movements and respiratory-related leg movements than for PLMS. Significant correlations were found between autonomic activations and electromyographic activity, as well as between autonomic activations and EEG delta activity, but not between higher-frequency EEG rhythms and EMG activity or HRV changes. CONCLUSIONS: These results suggest a primary role of the sympathetic nervous system in the generation of PLMS.
Resumo:
OBJECTIVES: Obstructive sleep apnea (OSA) can have adverse effects on cognitive functioning, mood, and cardiovascular functioning. OSA brings with it disturbances in sleep architecture, oxygenation, sympathetic nervous system function, and inflammatory processes. It is not clear which of these mechanisms is linked to the decrease in cognitive functioning. This study examined the effect of inflammatory parameters on cognitive dysfunction. MATERIALS AND METHODS: Thirty-nine patients with untreated sleep apnea were evaluated by polysomnography and completed a battery of neuropsychological tests. After the first night of evaluation in the sleep laboratory, blood samples were taken for analysis of interleukin 6, tumor necrosis factor-alpha (TNF-alpha), and soluble TNF receptor 1 (sTNF-R1). RESULTS: sTNF-R1 significantly correlated with cognitive dysfunction. In hierarchical linear regression analysis, measures of obstructive sleep apnea severity explained 5.5% of the variance in cognitive dysfunction (n.s.). After including sTNF-R1, percentage of variance explained by the full model increased more than threefold to 19.6% (F = 2.84, df = 3, 36, p = 0.05). Only sTNF-R1 had a significant individual relationship with cognitive dysfunction (beta = 0.376 t = 2.48, p = 0.02). CONCLUSIONS: sTNF-R1 as a marker of chronic inflammation may be associated with diminished neuropsychological functioning in patients with OSA.
Resumo:
STUDY OBJECTIVES 1) To investigate the impact of acetazolamide, a drug commonly prescribed for altitude sickness, on cortical oscillations in patients with obstructive sleep apnea syndrome (OSAS). 2) To examine alterations in the sleep EEG after short-term discontinuation of continuous positive airway pressure (CPAP) therapy. DESIGN Data from two double-blind, placebo-controlled randomized cross-over design studies were analyzed. SETTING Polysomnographic recordings in sleep laboratory at 490 m and at moderate altitudes in the Swiss Alps: 1630 or 1860 m and 2590 m. PATIENTS Study 1: 39 OSAS patients. Study 2: 41 OSAS patients. INTERVENTIONS Study 1: OSAS patients withdrawn from treatment with CPAP. Study 2: OSAS patients treated with autoCPAP. Treatment with acetazolamide (500-750 mg) or placebo at moderate altitudes. MEASUREMENTS AND RESULTS An evening dose of 500 mg acetazolamide reduced slow-wave activity (SWA; approximately 10%) and increased spindle activity (approximately 10%) during non-REM sleep. In addition, alpha activity during wake after lights out was increased. An evening dose of 250 mg did not affect these cortical oscillations. Discontinuation of CPAP therapy revealed a reduction in SWA (5-10%) and increase in beta activity (approximately 25%). CONCLUSIONS The higher evening dose of 500 mg acetazolamide showed the "spectral fingerprint" of Benzodiazepines, while 250 mg acetazolamide had no impact on cortical oscillations. However, both doses had beneficial effects on oxygen saturation and sleep quality.
Resumo:
STUDY OBJECTIVES: To describe the time structure of leg movements (LM) in obstructive sleep apnea (OSA) syndrome, in order to advance understanding of their clinical significance. LOCATION: Sleep Research Centre, Oasi Institute (IRCCS), Troina, Italy. SETTING: Sleep laboratory. PATIENTS: Eighty-four patients (16 females, 68 males, mean age 55.1 y, range 29-74 y). METHODS: Respiratory-related leg movements (RRLM) and those unrelated to respiratory events (NRLM) were examined within diagnostic polysomnograms alone and together for their distributions within the sleep period and for their periodicity. MEASUREMENTS AND RESULTS: Patients with OSA and RRLM exhibited more periodic leg movements in sleep (PLMS), particularly in NREM sleep. A gradual decrease in number of NRLM across the sleep period was observed in patients with RRLM. This pattern was less clear for RRLM. Frequency histograms of intermovement intervals of all LMs in patients with RRLM showed a prominent first peak at 4 sec, and a second peak at approximately 24 sec coincident with that of PLMS occurring in the absence of OSA. A third peak of lowest amplitude was the broadest with a maximum at approximately 42 sec. In patients lacking RRLM, NRLM were evident with a single peak at 2-4 sec. A stepwise linear regression analysis showed that, after controlling for a diagnosis of restless legs syndrome and apnea-hypopnea index, PLMS remained significantly associated with RRLM. CONCLUSION: The time structure of leg movements occurring in conjunction with respiratory events exhibit features of periodic leg movements in sleep occurring alone, only with a different and longer period. This brings into question the validity, both biologic and clinical, of scoring conventions with their a priori exclusion from consideration as periodic leg movements in sleep.
Resumo:
Lucid dreams – dreams in which the dreamer is aware that is dreaming – most frequently occur during REM sleep, yet there is some evidence suggesting that lucid dreaming can occur during NREM sleep as well. By conducting a sleep laboratory study on lucid dreams, we found two possible instances of lucidity during NREM sleep which are reported here. While lucid dreaming during NREM sleep seems to be much rarer and more difficult to achieve, it appears to be possible and is most likely to occur during N1 sleep, somewhat less likely during N2 sleep and yet to be observed during N3 sleep. Future studies should explore induction methods, underlying neural mechanisms and perceptual/dream content differences between REM and NREM lucid dreams. Furthermore, a consensus agreement is needed to define what is meant by lucid dreaming and create a vocabulary that is helpful in clarifying variable psychophysiological states that can support self-reflective awareness.
Resumo:
BACKGROUND It has been suggested that sleep apnea syndrome may play a role in normal-tension glaucoma contributing to optic nerve damage. The purpose of this study was to evaluate if optic nerve and visual field parameters in individuals with sleep apnea syndrome differ from those in controls. PATIENTS AND METHODS From the records of the sleep laboratory at the University Hospital in Bern, Switzerland, we recruited consecutive patients with severe sleep apnea syndrome proven by polysomnography, apnea-hypopnea index >20, as well as no sleep apnea controls with apnea-hypopnea index <10. Participants had to be unknown to the ophtalmology department and had to have no recent eye examination in the medical history. All participants underwent a comprehensive eye examination, scanning laser polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, California), scanning laser ophthalmoscopy (Heidelberg Retina Tomograph II, HRT II), and automated perimetry (Octopus 101 Programm G2, Haag-Streit Diagnostics, Koeniz, Switzerland). Mean values of the parameters of the two groups were compared by t-test. RESULTS The sleep apnea group consisted of 69 eyes of 35 patients; age 52.7 ± 9.7 years, apnea-hypopnea index 46.1 ± 24.8. As controls served 38 eyes of 19 patients; age 45.8 ± 11.2 years, apnea-hypopnea index 4.8 ± 1.9. A difference was found in mean intraocular pressure, although in a fully overlapping range, sleep apnea group: 15.2 ± 3.1, range 8-22 mmHg, controls: 13.6 ± 2.3, range 9-18 mmHg; p<0.01. None of the extended visual field, optic nerve head (HRT) and retinal nerve fiber layer (GDx VCC) parameters showed a significant difference between the groups. CONCLUSION Visual field, optic nerve head, and retinal nerve fiber layer parameters in patients with sleep apnea did not differ from those in the control group. Our results do not support a pathogenic relationship between sleep apnea syndrome and glaucoma.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06