513 resultados para slag valorisation
Resumo:
The growth of the construction industry worldwide poses a serious concern on the sustainability of the building material production chain, mainly due to the carbon emissions related to the production of Portland cement. On the other hand, valuable materials from waste streams, particularly from the metallurgical industry, are not used at their full potential. Alkali activated concrete (AAC) has emerged in the last years as a promising alternative to traditional Portland cement based concrete for some applications. However, despite showing remarkable strength and durability potential, its utilisation is not widespread, mainly due to the lack of broadly accepted standards for the selection of suitable mix recipes fulfilling design requirements, in particular workability, setting time and strength. In this paper, a contribution towards the design development of AAC synthetized from pulverised fuel ash (60%) and ground granulated blast furnace slag (40%) activated with a solution of sodium hydroxide and sodium silicate is proposed. Results from a first batch of mixes indicated that water content influences the setting time and that paste content is a key parameter for controlling strength development and workability. The investigation indicated that, for the given raw materials and activator compositions, a minimum water to solid (w/s) ratio of 0.37 was needed for an initial setting time of about 1 hour. Further work with paste content in the range of 30% to 33% determined the relationship between workability and strength development and w/s ratio and paste content. Strengths in the range of 50 - 60 MPa were achieved.
Resumo:
This paper presents the results of an experimental investigation on compressive strength of unfired compressed brick obtained with coal combustion residues (CCRs) produced by the Niger Coal Society. Preliminary physical and optical (XRD and SEM) characterisation of coal slag, including lixiviation tests, have been carried out. Cement powder, lateritic clayey soil and sand have been chosen as stabilizing agents for bricks. 12 dosages have been tested and about 300 bricks have been produced with a hand-operated press. Results show uniaxial compressive strengths (UCSs) ranging from 4 MPa to 27 MPa for the highest cement stabilisation ratio. UCS higher than 7.5 MPa have been observed for stabilisation with 20% of laterite +10% cement after 45 days of curing. Obtained bricks showed good mechanical resistance and low weight. No health threat has been detected for the obtained samples. Study developments are oriented towards the analysis of Pozzolanic properties of CCRs, properties of hydrated lime stabilisation, thermal properties and durability assessment.© 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Niger Coal Society (Societé Nigérienne de Charbon – SONICHAR) produces electricity for local consumption in Tefereyre, 75 km north-west from Agadez, Niger. The coal combustion residuals production is about 150,000 tons per year. In order to reduce this environmental burden and to valorize these by-products, a study focusing on their physical and chemical features as well as on the mechanical resistance of compressed brick has been undertaken. Physical characterization of coal slag, chemical and lixiviation tests have been carried out, assessing the material main parameters, verifying the presence of hazardous composites and elements and comparing the obtained results with the findings of an in-deep literary review. Cement powder has been chosen as stabilizing agent as a preliminary option. Four different dosages have been tested and bricks have been produced with a hand-operated press. Compressive strength has been tested at different days of curing. Results show remarkable uniaxial compressive strengths (UCS) for all the mixes after cure, ranging from 4MPa up to more than 20MPa for the highest stabilization ratio. UCS higher than 5MPa have been observed for 20% and 30% cement stabilization ratios after only 7 days of cure, reaching respectively about 11MPa and 13MPa after 45 days. In conclusion obtained bricks show good mechanical resistance and low weight. No health threat has been detected from the obtained sample. Study developments are oriented towards the feasibility of the utilization of low-cost, locally available stabilization means, notably clay and cohesive soils, and on thermal properties assessment.
Resumo:
The efficiency of dephosphorisation is governed by the thermodynamic behaviour of phosphorus and oxygen in molten metal, and P2O5 and FeO in slag. The equilibrium distribution of phosphorus and oxygen, for a wide range of chemical compositions simulating the evolution of slag composition during a typical BOF blow, has been experimentally determined. A mathematical model for estimation of the activity coefficients, as a function of the chemical composition, was also attempted.
Resumo:
CaO-SiO2-FeOx-P2O5-MgO bearing slags are typical in the basic oxygen steelmaking (BOS) process. The partition ratio of phosphorus between slag and steel is an index of the phosphorus holding capacity of the slag, which determines the phosphorus content achievable in the finished steel. The influences of FeO concentration and basicity on the equilibrium phosphorus partition ratios were experimentally determined at temperatures of 1873 and 1923 K, for conditions of MgO saturation. The partition ratio initially increased with basicity but attained a constant value beyond basicity of 2.5. An increase in FeO concentration up to approximately 13 to 14 mass pet was beneficial for phosphorus partition.
Resumo:
Refining reactions in steelmaking primarily involve oxidation of impurity element(s). The oxidation potential of the slag and the activity of oxygen in the metal (h(O)) are the major factors controlling these chemical reactions. In turn, the oxidation potential of the slag is influenced strongly by the equilibrium distribution of oxygen between ferrous and ferric oxides. We recently investigated the activity coefficient of FeO in steelmaking slag and the effect of chemical composition thereon. This work is focused on estimation of theactivity coefficient of Fe2O3.
Resumo:
Calcium-calcium fluoride melt was used to remove phosphorus from the ferro-chrome alloy (64.5 wt% Cr, 0.15 wt% P) during electro slag refining process. The effect of atmosphere and deoxidisers, viz. Al, Fe–Mo and misch metal were also studied during dephosphorisation reaction. The thermodynamic properties of Ca–CaF2 melt is calculated from a known phase diagram and these results are discussed in relation with the dephosphorisation reaction.
Resumo:
In the present article, slag foaming phenomenon under dynamic conditions is critically analyzed on the basis of the results of high-temperature X-ray image analysis experiments. The results indicate that the mismatch between the gas generation rate and gas escape rate has a serious impact on the foam height. This mismatch is attributed to the chemical reaction rate, which has to be considered in modeling slag foaming under dynamic conditions. The results further imply that a critical ratio of bubble size/crucible size exists, where wall effects are likely to become prominent.
Resumo:
During stainless steelmaking, reductions of oxides, dissolution of oxides in the slag, and foam formation take place simultaneously. Each of these phenomena independently has been studied by a number of investigators, but little information is available for these phenomena acting simultaneously. Experiments have been conducted to study the simultaneous reduction of oxides of chromium, vanadium, and iron from stainless steelmaking slag by carbon along with the dissolution of alumina in the slag. The overall phenomena and the effect on the chromium oxide reduction have been studied..
Resumo:
All refractories show enhanced corrosion near the slag/metal interface due to Marangoni and convective flows. However, in the case of oxide refractories containing graphite flakes, corrosion is severe due to periodic oscillations in the contact angle at the slag/metal interface, resulting in cyclic dissolution of oxide and graphite into the slag and metal, respectively. Alumina--graphite (AG) refractories should be used only where they are not in simultaneous contact with slag (flux) and low carbon steel.
Resumo:
Many industrial processes involve reaction between the two immiscible liquid systems. It is very important to increase the efficiency and productivity of such reactions. One of the important processes that involve such reactions is the metal-slag system. To increase the reaction rate or efficiency, one must increase the contact surface area of one of the phases. This is either done by emulsifying the slag into the metal phase or the metal into the slag phase. The latter is preferred from the stability viewpoint. Recently, we have proposed a simple and elegant mathematical model to describe metal emulsification in the presence of bottom gas bubbling. The same model is being extended here. The effect of slag and metal phase viscosity, density and metal droplet size on the metal droplet velocity in the slag phase is discussed for the above mentioned metal emulsification process. The models results have been compared with experimental data.