973 resultados para skeletal muscle gene expression


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle, as a consequence of its mass and great capacity for altered metabolism, has a major impact on whole-body metabolic homeostasis and is capable of remarkable adaptation in response to various physiological stimuli, including exercise and dietary intervention. Exercise-induced increases in skeletal muscle mRNA levels of a number of genes have been reported, due to transcriptional activation and/or increased mRNA stability. The cellular adaptations to exercise training appear to be due to the cumulative effects of transient increases in gene transcription after repeated exercise bouts. The relative importance of transcriptional (mRNA synthesis) and translational (mRNA stability or translational efficiency) mechanisms for the training-induced increases in skeletal muscle protein abundance remains to be fully elucidated. Dietary manipulation, and the associated alterations in nutrient availability and hormone levels, can also modify skeletal muscle gene expression, although fewer studies have been reported. A major challenge is to understand how exercise and diet exert their effects on gene and protein expression in skeletal muscle. In relation to exercise, potential stimuli include stretch and muscle tension, the pattern of motor nerve activity and the resultant calcium transients, the energy charge of the cell and substrate availability, oxygen tension and circulating hormones. These are detected by various cellular signaling mechanisms, acting on a range of downstream targets and a wide range of putative transcription factors. A key goal in the years ahead is to identify how alterations at the level of gene expression are coupled to the changes in skeletal muscle phenotype. It is clear that gene expression, although representing a specific site of regulation, is only one step in a complex cascade from the initial stimulus to the final phenotypic adaptation and integrated physiological response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Skeletal muscle is a complex and heterogenous tissue capable of remarkable adaptation in response to exercise training. The role of gene transcription, as an initial target to control protein synthesis, is poorly understood.
2. Mature myofibres contain several hundred nuclei, all of which maintain transcriptional competency, although the localized responsiveness of nuclei is not well known. Myofibres are capable of hypertrophy. These processes require the activation and myogenic differentiation of mononuclear satellite cells that fuse with the enlarging or repairing myofibre.
3. A single bout of exercise in human subjects is capable of activating the expression of many diverse groups of genes.
4. The impact of repeated exercise bouts, typical of exercise training, on gene expression has yet to receive systematic investigation.
5. The molecular programme elicited by resistance exercise and endurance exercise differs markedly. Muscular hypertrophy following resistance exercise is dependent on the activation of satellite cells and their subsequent myogenic maturation. Endurance exercise requires the simultaneous activation of mitochondrial and nuclear genes to enable mitochondrial biogenesis.
6. Future analysis of the regulation of genes by exercise may combine high-throughput technologies, such as gene-chips, enabling the rapid detection and analysis of changes in the expression of many thousands of genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary fatty acids regulate the abundance and activity of various proteins involved in the regulation of fat oxidation by functioning as regulators of gene transcription. To determine whether the transcription of key lipid metabolic proteins necessary for fat metabolism within human skeletal muscle are regulated by acute elevations in circulating free fatty acid (FFA) concentrations, 7 healthy men underwent 3 randomized resting infusions of Intralipid (20%) with heparin sodium, saline and heparin sodium, or saline only for 5 hours. These infusions significantly elevated plasma FFA concentrations by 15-fold (to 1.67 ± 0.13 mmol/L) in the Intralipid infusion trial, with modest elevations observed in the saline and heparin sodium and saline alone infusion groups (0.67 ± 0.09 and 0.49 ± 0.087 mmol/L, P < .01 both vs Intralipid infusion). Analysis of messenger RNA (mRNA) concentration demonstrated that pyruvate dehydrogenase kinase isoform 4 (PDK4) mRNA, a key negative regulator of glucose oxidation, was increased in all trials with a 24-fold response after Intralipid infusion, 15-fold after saline and heparin infusion, and 9-fold after saline alone. The PDK4 increases were not significantly different between the 3 trials. The mRNA concentration of the major uncoupling protein within skeletal muscle, uncoupling protein 3, was not elevated in parallel to the increased plasma FFA as similar (not, vert, similar2-fold) increases were evident in all trials. Additional genes involved in lipid transport (fatty acid translocase/CD36), oxidation (carnitine palmitoyltransferase I), and metabolism (1-acylglycerol-3-phosphate O-acyltransferase 1, hormone-sensitive lipase, and peroxisomal proliferator-activated receptor-γ coactivator-1α) were not altered by increased circulating FFA concentrations. The present data demonstrate that of the genes analyzed that encode proteins that are key regulators of lipid homeostasis within skeletal muscle, only the PDK4 gene is uniquely sensitive to increasing FFA concentrations after increased plasma FFA achieved by intravenous lipid infusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate whether skeletal muscle gene expression of calpain 3 is related to obesity and insulin resistance.

DESIGN: Cross-sectional studies in 27 non-diabetic human subjects and in Psammomys obesus, a polygenic animal model of obesity and type 2 diabetes.

MEASUREMENTS: Expression of CAPN3 in skeletal muscle was measured using Taqman fluorogenic PCR. In the human subjects, body composition was assessed by DEXA and insulin sensitivity was measured by euglycemic-hyperinsulinemic clamp. In Psammomys obesus, body composition was determined by carcass analysis, and substrate oxidation rates, physical activity and energy expenditure were measured by whole-body indirect calorimetry.

RESULTS: In human subjects, calpain 3 gene expression was negatively correlated with total (P=0.022) and central abdominal fat mass (P=0.034), and with blood glucose concentration in non-obese subjects (P=0.017). In Psammomys obesus, calpain 3 gene expression was negatively correlated with circulating glucose (P=0.013) and insulin (P=0.034), and with body fat mass (P=0.049). Indirect calorimetry revealed associations between calpain 3 gene expression and carbohydrate oxidation (P=0.009) and energy expenditure (P=0.013).

CONCLUSION/INTERPRETATION: Lower levels of expression of calpain 3 in skeletal muscle were associated with reduced carbohydrate oxidation and elevated circulating glucose and insulin concentrations, and also with increased body fat and in particular abdominal fat. Therefore, reduced expression of calpain 3 in both humans and Psammomys obesus was associated with phenotypes related to obesity and insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ingestion of carbohydrate during exercise may blunt the stimulation of fat oxidative pathways by raising plasma insulin and glucose concentrations and lowering plasma free fatty acid (FFA) levels, thereby causing a marked shift in substrate oxidation. We investigated the effects of a single 2-h bout of moderate-intensity exercise on the expression of key genes involved in fat and carbohydrate metabolism with or without glucose ingestion in seven healthy untrained men (22.7 ± 0.6 yr; body mass index: 23.8 ± 1.0 kg/m2; maximal O2 consumption: 3.85 ± 0.21 l/min). Plasma FFA concentration increased during exercise (P < 0.01) in the fasted state but remained unchanged after glucose ingestion, whereas fat oxidation (indirect calorimetry) was higher in the fasted state vs. glucose feeding (P < 0.05). Except for a significant decrease in the expression of pyruvate dehydrogenase kinase-4 (P < 0.05), glucose ingestion during exercise produced minimal effects on the expression of genes involved in carbohydrate utilization. However, glucose ingestion resulted in a decrease in the expression of genes involved in fatty acid transport and oxidation (CD36, carnitine palmitoyltransferase-1, uncoupling protein 3, and 5'-AMP-activated protein kinase-α2; P < 0.05). In conclusion, glucose ingestion during exercise decreases the expression of genes involved in lipid metabolism rather than increasing genes involved in carbohydrate metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To examine whether rosiglitazone alters gene expression of some key genes involved in mitochondrial biogenesis and oxidative capacity in skeletal muscle of type 2 diabetic patients, and whether this is associated with alterations in skeletal muscle oxidative capacity and lipid content.

Design: Skeletal muscle gene expression, mitochondrial protein content, oxidative capacity and lipid accumulation were measured in muscle biopsies obtained from diabetic patients, before and after 8 weeks of rosiglitazone treatment, and matched controls. Furthermore, whole-body insulin sensitivity and substrate utilization were assessed.

Subjects: Ten obese type 2 diabetic patients and 10 obese normoglycemic controls matched for age and BMI.

Methods: Gene expression and mitochondrial protein content of complexes I–V of the respiratory chain were measured by quantitative polymerase chain reaction and Western blotting, respectively. Histochemical staining was used to quantify lipid accumulation and complex II succinate dehydrogenase (SDH) activity. Insulin sensitivity and substrate utilization were measured during a hyperinsulinemic–euglycemic clamp with indirect calorimetry.

Results: Skeletal-muscle mRNA of PGC-1a and PPARb/d – but not of other genes involved in glucose, fat and oxidative metabolism – was significantly lower in diabetic patients (Po0.01). Rosiglitazone significantly increased PGC-1a (B2.2-fold, Po0.01) and PPARb/d (B2.6-fold, Po0.01), in parallel with an increase in insulin sensitivity, SDH activity and metabolic flexibility (Po0.01). Surprisingly, none of the measured mitochondrial proteins was reduced in type 2 diabetic patients, nor affected by rosiglitazone treatment. No alterations were seen in muscular fat accumulation upon treatment.

Conclusion: These results suggest that the insulin-sensitizing effect of rosiglitazone may involve an effect on muscular oxidative capacity, via PGC-1a and PPARb/d, independent of mitochondrial protein content and/or changes in intramyocellular lipid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1.      Skeletal muscle is a highly plastic tissue that has a remarkable ability to adapt to external demands, such as exercise. Many of these adaptations can be explained by changes in skeletal muscle gene expression. A single bout of exercise is sufficient to induce the expression of some metabolic genes. We have focused our attention on the regulation of glucose transporter isoform 4 (GLUT-4) expression in human skeletal muscle.

2.      Glucose transporter isoform 4 gene expression is increased immediately following a single bout of exercise, and the GLUT-4 enhancer factor (GEF) and myocyte enhancer factor 2 (MEF2) transcription factors are required for this response. Glucose transporter isoform enhancer factor and MEF2 DNA binding activities are increased following exercise, and the molecular mechanisms regulating MEF2 in exercising human skeletal muscle have also been examined.

3.      These studies find possible roles for histone deacetylase 5 (HDAC5), adenosine monophosphate–activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and p38 mitogen-activated protein kinase (MAPK) in regulating MEF2 through a series of complex interactions potentially involving MEF2 repression, coactivation and phosphorylation.

4.      Given that MEF2 is a transcription factor required for many exercise responsive genes, it is possible that these mechanisms are responsible for regulating the expression of a variety of metabolic genes during exercise. These mechanisms could also provide targets for the treatment and management of metabolic disease states, such as obesity and type 2 diabetes, which are characterized by mitochondrial dysfunction and insulin resistance in skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging is associated with increased circulating pro-inflammatory and lower anti-inflammatory cytokines. Exercise training, in addition to improving muscle function, reduces these circulating pro-inflammatory cytokines. Yet, few studies have evaluated changes in the expression of cytokines within skeletal muscle after exercise training. The aim of the current study was to examine the expression of cytokines both at rest and following a bout of isokinetic exercise performed before and after 12 weeks of resistance exercise training in young (n = 8, 20.3 ± 0.8 yr) and elderly men (n = 8, 66.9 ± 1.6 yr). Protein expression of various cytokines was determined in muscle homogenates. The expression of MCP-1, IL-8 and IL-6 (which are traditionally classified as ‘pro-inflammatory’) increased substantially after acute exercise. By contrast, the expression of the anti-inflammatory cytokines IL-4, IL-10 and IL-13 increased only slightly (or not at all) after acute exercise. These responses were not significantly different between young and elderly men, either before or after 12 weeks of exercise training. However, compared with the young men, the expression of pro-inflammatory cytokines 2 h post exercise tended to be greater in the elderly men prior to training. Training attenuated this difference. These data suggest that the inflammatory response to unaccustomed exercise increases with age. Furthermore, regular exercise training may help to normalize this inflammatory response, which could have important implications for muscle regeneration and adaptation in the elderly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endurance exercise transiently increases the mRNA of key regulatory proteins involved in skeletal muscle metabolism. During prolonged exercise and subsequent recovery, circulating plasma fatty acid (FA) concentrations are elevated. The present study therefore aimed to determine the sensitivity of key metabolic genes to FA exposure, assessed in vitro using L6 myocytes and secondly, to measure the expression of these same set of genes in vivo, following a single exercise bout when the post-exercise rise in plasma FA is abolished by acipimox. Initial studies using L6 myotubes demonstrated dose responsive sensitivity for both PDK4 and PGC-1α mRNA to acute FA exposure in vitro. Nine active males performed two trials consisting of 2 h exercise, followed by 2 h of recovery. In one trial, plasma FA availability was reduced by the administration of acipimox (LFA), a pharmacological inhibitor of adipose tissue lipolysis, and in the second trial a placebo was provided (CON). During the exercise bout and during recovery, the rise in plasma FA and glycerol was abolished by acipimox treatment. Following exercise the mRNA abundance of PDK4 and PGC-1α were elevated and unaffected by either acipimox or placebo. Further analysis of skeletal muscle gene expression demonstrated that the CPT I gene was suppressed in both trials, whilst UCP-3 gene was only modestly regulated by exercise alone. Acipimox ingestion did not alter the response for both CPT I and UCP-3. Thus, this study demonstrates that the normal increase in circulating concentrations of FA during the later stages of exercise and subsequent recovery is not required to induce skeletal muscle mRNA expression of several proteins involved in regulating substrate metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle adaptations to exercise confer many of the health benefits of physical activity and occur partly through alterations in skeletal muscle gene expression. The exact mechanisms mediating altered skeletal muscle gene expression in response to exercise are unknown. However, in recent years, chromatin remodelling through epigenetic histone modifications has emerged as a key regulatory mechanism controlling gene expression in general. The purpose of this study was to examine the effect of exercise on global histone modifications that mediate chromatin remodelling and transcriptional activation in human skeletal muscle in response to exercise. In addition, we sought to examine the signalling mechanisms regulating these processes. Following 60 min of cycling, global histone 3 acetylation at lysine 9 and 14, a modification associated with transcriptional initiation, was unchanged from basal levels, but was increased at lysine 36, a site associated with transcriptional elongation. We examined the regulation of the class IIa histone deacetylases (HDACs), which are enzymes that suppress histone acetylation and have been implicated in the adaptations to exercise. While we found no evidence of proteasomal degradation of the class IIa HDACs, we found that HDAC4 and 5 were exported from the nucleus during exercise, thereby removing their transcriptional repressive function. We also observed activation of the AMP-activated protein kinase (AMPK) and the calcium–calmodulin-dependent protein kinase II (CaMKII) in response to exercise, which are two kinases that induce phosphorylation-dependent class IIa HDAC nuclear export. These data delineate a signalling pathway that might mediate skeletal muscle adaptations in response to exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impaired function of shoulder muscles, resulting from rotator cuff tears, is associated with abnormal deposition of fat in muscle tissue, but corresponding cellular and molecular mechanisms, likely reflected by altered gene expression profiles, are largely unknown. Here, an analysis of muscle gene expression was carried out by semiquantitative RT-PCR in total RNA extracts of supraspinatus biopsies collected from 60 patients prior to shoulder surgery. A significant increase of alpha-skeletal muscle actin (p = 0.0115) and of myosin heavy polypeptide 1 (p = 0.0147) gene transcripts was observed in parallel with progressive fat deposition in the muscle, assessed on parasagittal T1-weighted turbo-spin-echo magnetic resonance images according to Goutallier. Upregulation of alpha-skeletal muscle actin and of myosin heavy polypeptide-1 has been reported to be associated with increased muscle tissue metabolism and oxidative stress. The findings of the present study, therefore, challenge the hypothesis that increased fat deposition in rotator cuff muscle after injury reflects muscle degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acute bout of exercise increases skeletal muscle glucose uptake, improves glucose homeostasis and insulin sensitivity, and enhances muscle oxidative capacity. Recent studies have shown an association between these adaptations and the energy-sensing 5' AMP-activated protein kinase (AMPK), the activity of which is increased in response to exercise. Activation of AMPK has been associated with enhanced expression of key metabolic proteins such as GLUT-4, hexokinase II (HKII), and mitochondrial enzymes, similar to exercise. It has been hypothesized that AMPK might regulate gene and protein expression through direct interaction with the nucleus. The purpose of this study was to determine if nuclear AMPK α2 content in human skeletal muscle was increased by exercise. Following 60 min of cycling at 72 +/- 1% of VO2peak in six male volunteers (20.6 +/- 2.1 years; 72.9 +/- 2.1 kg; VO2peak = 3.62 +/- 0.18 l/min), nuclear AMPK α2 content was increased 1.9 +/- 0.4-fold (P = 0.024). There was no change in whole-cell AMPK α2 content or AMPK α2 mRNA abundance. These results suggest that nuclear translocation of AMPK might mediate the effects of exercise on skeletal muscle gene and protein expression.