962 resultados para single-family house


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines Smart Grids and distributed generation, which is connected to a single-family house. The distributed generation comprises small wind power plant and solar panels. The study is done from the consumer point of view and it is divided into two parts. The first part presents the theoretical part and the second part presents the research part. The theoretical part consists of the definition of distributed generation, wind power, solar energy and Smart Grids. The study examines what the Smart Grids will enable. New technology concerning Smart Grids is also examined. The research part introduces wind and sun conditions from two countries. The countries are Finland and Germany. According to the wind and sun conditions of these two countries, the annual electricity production from wind power plant and solar panels will be calculated. The costs of generating electricity from wind and solar energy are calculated from the results of annual electricity productions. The study will also deal with feed-in tariffs, which are supporting systems for renewable energy resources. It is examined in the study, if it is cost-effective for the consumers to use the produced electricity by themselves or sell it to the grid. Finally, figures for both countries are formed. The figures include the calculated cost of generating electricity from wind power plant and solar panels, retail and wholesale prices and feed-in tariffs. In Finland, it is not cost-effective to sell the produced electricity to the grid, before there are support systems. In Germany, it is cost-effective to sell the produced electricity from solar panels to the grid because of feed-in tariffs. On the other hand, in Germany it is cost-effective to produce electricity from wind to own use because the retail price is higher than the produced electricity from wind.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presented work is related to the use of solar energy for the needs of heating and electricity for a single house located in Poland. Electricity will provided by energy conversion in the turbine by means of Organic Rankine Cycle (ORC), in which the operating medium (water heated in solar collector) is heating refrigerator in the heating exchanger. The solar installation is integrated with heat accumulator and wood boiler, which is used in the situation that collector is not enough to fill requirements of thermal comfort. There are chosen also all the necessary components of the system. In the work is also performed the economic assessment, by F chart method, to evaluate the profitability of the project, taking into total costs and savings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a Nordic climate, space heating (SH) and domestic hot water (DHW) used in buildings constitute a considerable part of the total energy use in the country. For 2010, energy used for SH and DHW amounted to almost 90 TWh in Sweden which corresponds to 60 % of the energy used in the residential and service sector, or almost 24 % of the total final energy use for the country. Storing heat and cold with the use of thermal energy storage (TES) can be one way of increasing the energy efficiency of a building by opening up possibilities for alternative sources of heat or cold through a reduced mismatch between supply and demand. Thermal energy storage without the use of specific control systems are said to be passive and different applications using passive TES have been shown to increase energy efficiency and/or reduce power peaks of systems supplying the heating and cooling needs of buildings, as well as having an effect on the indoor climate. Results are however not consistent between studies and focus tend to be on the reduction of cooling energy or cooling power peaks. In this paper, passive TES introduced through an increased thermal mass in the building envelope to two single family houses with different insulation standard is investigated with building energy simulations. A Nordic climate is used and the focus of this study is both on the reduction of space heating demand and space heating power, as well as on reduction of excess temperatures in residential single family houses without active cooling systems. Care is taken to keep the building envelope characteristics other than the thermal mass equal for all cases so that any observations made can be derived to the change in thermal mass. Results show that increasing the sensible thermal mass in a single family house can reduce the heating demand only slightly (1-4 %) and reduce excess temperatures (temperatures above 24 degrees C) by up to 20 %. Adding a layer of PCM (phase change materials) to the light building construction can give similar reduction in heating demand and excess temperatures, however the phase change temperature is important for the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Sweden, there are about 0.5 million single-family houses that are heated by electricity alone, and rising electricity costs force the conversion to other heating sources such as heat pumps and wood pellet heating systems. Pellet heating systems for single-family houses are currently a strongly growing market. Future lack of wood fuels is possible even in Sweden, and combining wood pellet heating with solar heating will help to save the bio-fuel resources. The objectives of this thesis are to investigate how the electrically heated single-family houses can be converted to pellet and solar heating systems, and how the annual efficiency and solar gains can be increased in such systems. The possible reduction of CO-emissions by combining pellet heating with solar heating has also been investigated. Systems with pellet stoves (both with and without a water jacket), pellet boilers and solar heating have been simulated. Different system concepts have been compared in order to investigate the most promising solutions. Modifications in system design and control strategies have been carried out in order to increase the system efficiency and the solar gains. Possibilities for increasing the solar gains have been limited to investigation of DHW-units for hot water production and the use of hot water for heating of dishwashers and washing machines via a heat exchanger instead of electricity (heat-fed appliances). Computer models of pellet stoves, boilers, DHW-units and heat-fed appliances have been developed and the parameters for the models have been identified from measurements on real components. The conformity between the models and the measurements has been checked. The systems with wood pellet stoves have been simulated in three different multi-zone buildings, simulated in detail with heat distribution through door openings between the zones. For the other simulations, either a single-zone house model or a load file has been used. Simulations were carried out for Stockholm, Sweden, but for the simulations with heat-fed machines also for Miami, USA. The foremost result of this thesis is the increased understanding of the dynamic operation of combined pellet and solar heating systems for single-family houses. The results show that electricity savings and annual system efficiency is strongly affected by the system design and the control strategy. Large reductions in pellet consumption are possible by combining pellet boilers with solar heating (a reduction larger than the solar gains if the system is properly designed). In addition, large reductions in carbon monoxide emissions are possible. To achieve these reductions it is required that the hot water production and the connection of the radiator circuit is moved to a well insulated, solar heated buffer store so that the boiler can be turned off during the periods when the solar collectors cover the heating demand. The amount of electricity replaced using systems with pellet stoves is very dependant on the house plan, the system design, if internal doors are open or closed and the comfort requirements. Proper system design and control strategies are crucial to obtain high electricity savings and high comfort with pellet stove systems. The investigated technologies for increasing the solar gains (DHW-units and heat-fed appliances) significantly increase the solar gains, but for the heat-fed appliances the market introduction is difficult due to the limited financial savings and the need for a new heat distribution system. The applications closest to market introduction could be for communal laundries and for use in sunny climates where the dominating part of the heat can be covered by solar heating. The DHW-unit is economical but competes with the internal finned-tube heat exchanger which is the totally dominating technology for hot water preparation in solar combisystems for single-family houses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article discusses some of the complexities of human decision-making. It aims, in particular, at relating the nature of decision-making to the illusory dichotomies of change and stability, individual actions and cultural sharing. Serving as an illustration to the discussion of the article is ongoing fieldwork in contexts of buying, selling and constructing pre-fabricated detached houses in the central Sweden, and the very specific question of how decisions to install one kind of heating-system rather than another come about. A common reductionism is to narrow down the understanding of decisions about heating systems and energy consumption to conscious choices made by individual householders. I have asked myself whether, on the contrary, anyone actually makes such decisions at all. Perhaps some of these decisions are merely outcomes of interaction between different individuals with their respective responsibilities and focuses of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vägar till en halverad energianvändning i Dalarnas byggnadsbestånd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new Brazilian ABNT NBR 15575 Standard (the ―Standard‖) recommends two methods for analyzing housing thermal performance: a simplified and a computational simulation method. The aim of this paper is to evaluate both methods and the coherence between each. For this, the thermal performance of a low-cost single-family house was evaluated through the application of the procedures prescribed by the Standard. To accomplish this study, the EnergyPlus software was selected. Comparative analyses of the house with varying envelope U-values and solar absorptance of external walls were performed in order to evaluate the influence of these parameters on the results. The results have shown limitations in the current Standard computational simulation method, due to different aspects: weather files, lack of consideration of passive strategies, and inconsistency with the simplified method. Therefore, this research indicates that there are some aspects to be improved in this Standard, so it could better represent the real thermal performance of social housing in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single-family house in a conventional suburb on the outskirts of Valdemoro, Madrid, is sited on a lot measuring 15 x 21 meters, on a corner with two street facades. = Una vivienda unifamiliar en una urbanización convencional en las afueras de Valdemoro – Madrid. La parcela es de 15 x 21 m, en esquina y con dos fachadas a la calle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On verso: Homestead at 315 S. 5th Ave.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sabendo que as energias de origem fóssil não são inesgotáveis e que afetam a qualidade do ambiente, nos últimos anos, o interesse pelas energias renováveis mereceu a atenção de ambientalistas e de governantes. Para diminuir a importação de energia, o próprio governo de Portugal incentivou, através de medidas legislativas diversas, a instalação de sistemas alternativos de produção elétrica. Face à pertinência desta matéria, a dissertação, Viabilidade Técnica e Económica das Diferentes Tecnologias de Microprodução, aborda o aproveitamento de energias renováveis através de tecnologias de Microprodução ligadas à rede elétrica. Nesta dissertação, numa primeira fase, apresentam-se os sistemas de microprodução existentes no mercado, descrevem-se os componentes que os constituem e destacam-se os aspetos legislativos aplicáveis. Numa segunda fase, com o objetivo de suportar a elaboração de uma ferramenta informática para apoio na escolha de equipamentos de microprodução, procede-se à análise financeira de tecnologias de microprodução, indicando os modelos matemáticos necessários. Um dos objetivos da dissertação, consiste na construção de uma ferramenta informática de cálculo e na sua aplicação a dois estudos de caso. Esse programa informático foi elaborado em Excel e é capaz de fornecer uma estimativa da produção de energia anual e da avaliação da viabilidade técnico-económica de cada tecnologia e pretende apoiar a decisão do investidor em tecnologias de microprodução. Tendo sido realizados dois estudos de caso - um edifício habitacional unifamiliar e um edifício Industrial – foi possível verificar o funcionamento da aplicação e a sua utilidade na determinação da solução mais vantajosa na escolha de uma tecnologia de microprodução, uma vez que, introduzidos os dados adequados, são gerados os cálculos que permitem fornecer uma visão de conjunto, possibilitando a comparação das diferentes propostas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moltes vegades l’usuari d’una instal•lació de climatització o calefacció, no dóna la suficient importància al sistema que l’hi ha de proporcionar un millor confort amb el màxim rendiment. Aquest confort és un factor determinant, entre molts d’altres, de la “qualitat de vida”. Mentre que el rendiment és un factor important a nivell econòmic i ecològic. Tot i tenir prevalença els aspectes d’estalvi energètic, aquests no impliquen haver de renunciar a un confort tèrmic i a un estalvi econòmic. Un dels aspectes que es centra el projecte és promoure l’ús racional de les fonts energètiques (solar, biomassa) per a la correcta climatització dels habitatges. El projecte es desenvolupa en l’àmbit domèstic, concretament correspon a un habitatge unifamiliar. Aquest està situat a la població de Roda de Ter, província de Barcelona. L’objectiu principal del projecte és l’elecció del sistema de climatització i el seu dimensionament, per tal de donar el màxim confort als usuaris que habitin a la vivenda. Criteris ambientals i eficients han estat objecte a considerar pel disseny constructiu de l’habitatge. Una de les mesures importants presses en el projecte, ha estat l’elecció de les diferents parts que formen la instal•lació de climatització. Es fa referència als aïllaments dels tancaments, el sistema solar de recolzament, equips de producció de fred i calor, entre d’altres. En el projecte, s’ha dut a terme un estudi dels diferents tancaments de l’habitatge, tot determinat per a cada un d’ells, el seu coeficient de transmissió tèrmica. Per seleccionar l’equipament més adequat s’ha partit de les condicions climatològiques del municipi de Roda de Ter i s’ha realitzat el càlcul de les necessitats tèrmiques de l’edifici. L’habitatge incorpora una instal•lació de captació solar tèrmica. Aquesta aportarà un suport energètic a tot el sistema de producció de calor, ja sigui per la producció d’aigua calenta sanitària com per el calefactat de la vivenda. La col•locació dels panells a la façana sud tindrà una doble funció: a més de proporcionar energia solar tèrmica, serviran d’elements de protecció solar en la temporada d’estiu. La caldera usada per donar recolzament tèrmic utilitzarà com a combustible el “pellet”. El “pellet” és un tipus de biomassa llenyosa que consta d’un derivat de la fusta en format granulat. Es defineix i es detalla el consum energètic en biomassa, electricitat i cost econòmic anual que ocasionarà la instal.lació dissenyada. El sistema de terra radiant adoptat permetrà el refrescament en èpoques estivals i el calefactat en èpoques hivernals. Aquest donarà el confort tèrmic necessari a cada estança de l’habitatge. En el projecte també es marquen les pautes bàsiques pel control de la instal•lació solar així com el control dels grups de bombament i la mescla d’aigua del terra radiant.