972 resultados para simulation-optimization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forest management is facing new challenges under climate change. By adjusting thinning regimes, conventional forest management can be adapted to various objectives of utilization of forest resources, such as wood quality, forest bioenergy, and carbon sequestration. This thesis aims to develop and apply a simulation-optimization system as a tool for an interdisciplinary understanding of the interactions between wood science, forest ecology, and forest economics. In this thesis, the OptiFor software was developed for forest resources management. The OptiFor simulation-optimization system integrated the process-based growth model PipeQual, wood quality models, biomass production and carbon emission models, as well as energy wood and commercial logging models into a single optimization model. Osyczka s direct and random search algorithm was employed to identify optimal values for a set of decision variables. The numerical studies in this thesis broadened our current knowledge and understanding of the relationships between wood science, forest ecology, and forest economics. The results for timber production show that optimal thinning regimes depend on site quality and initial stand characteristics. Taking wood properties into account, our results show that increasing the intensity of thinning resulted in lower wood density and shorter fibers. The addition of nutrients accelerated volume growth, but lowered wood quality for Norway spruce. Integrating energy wood harvesting into conventional forest management showed that conventional forest management without energy wood harvesting was still superior in sparse stands of Scots pine. Energy wood from pre-commercial thinning turned out to be optimal for dense stands. When carbon balance is taken into account, our results show that changing carbon assessment methods leads to very different optimal thinning regimes and average carbon stocks. Raising the carbon price resulted in longer rotations and a higher mean annual increment, as well as a significantly higher average carbon stock over the rotation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose certain discrete parameter variants of well known simulation optimization algorithms. Two of these algorithms are based on the smoothed functional (SF) technique while two others are based on the simultaneous perturbation stochastic approximation (SPSA) method. They differ from each other in the way perturbations are obtained and also the manner in which projections and parameter updates are performed. All our algorithms use two simulations and two-timescale stochastic approximation. As an application setting, we consider the important problem of admission control of packets in communication networks under dependent service times. We consider a discrete time slotted queueing model of the system and consider two different scenarios - one where the service times have a dependence on the system state and the other where they depend on the number of arrivals in a time slot. Under our settings, the simulated objective function appears ill-behaved with multiple local minima and a unique global minimum characterized by a sharp dip in the objective function in a small region of the parameter space. We compare the performance of our algorithms on these settings and observe that the two SF algorithms show the best results overall. In fact, in many cases studied, SF algorithms converge to the global minimum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present two efficient discrete parameter simulation optimization (DPSO) algorithms for the long-run average cost objective. One of these algorithms uses the smoothed functional approximation (SFA) procedure, while the other is based on simultaneous perturbation stochastic approximation (SPSA). The use of SFA for DPSO had not been proposed previously in the literature. Further, both algorithms adopt an interesting technique of random projections that we present here for the first time. We give a proof of convergence of our algorithms. Next, we present detailed numerical experiments on a problem of admission control with dependent service times. We consider two different settings involving parameter sets that have moderate and large sizes, respectively. On the first setting, we also show performance comparisons with the well-studied optimal computing budget allocation (OCBA) algorithm and also the equal allocation algorithm. Note to Practitioners-Even though SPSA and SFA have been devised in the literature for continuous optimization problems, our results indicate that they can be powerful techniques even when they are adapted to discrete optimization settings. OCBA is widely recognized as one of the most powerful methods for discrete optimization when the parameter sets are of small or moderate size. On a setting involving a parameter set of size 100, we observe that when the computing budget is small, both SPSA and OCBA show similar performance and are better in comparison to SFA, however, as the computing budget is increased, SPSA and SFA show better performance than OCBA. Both our algorithms also show good performance when the parameter set has a size of 10(8). SFA is seen to show the best overall performance. Unlike most other DPSO algorithms in the literature, an advantage with our algorithms is that they are easily implementable regardless of the size of the parameter sets and show good performance in both scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman-Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a simulation optimization of a real scheduling problem in industry, simulated annealing is introduced for this purpose.  Investigation is performed into the practicality of using simulated annealing to produce high quality schedules.  Results on the solution quality and computational effort show the inherent properties of the simulated annealing.  It is shown that when using this method, high quality schedules can be produced within reasonable time contraints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Póster presentado en Escape 22, European Symposium on Computer Aided Process Engineering, University College London, UK, 17-20 June 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the optimization of ammonia–water absorption cycles for cooling and refrigeration applications with economic and environmental concerns. Our approach combines the capabilities of process simulation, multi-objective optimization (MOO), cost analysis and life cycle assessment (LCA). The optimization task is posed in mathematical terms as a multi-objective mixed-integer nonlinear program (moMINLP) that seeks to minimize the total annualized cost and environmental impact of the cycle. This moMINLP is solved by an outer-approximation strategy that iterates between primal nonlinear programming (NLP) subproblems with fixed binaries and a tailored mixed-integer linear programming (MILP) model. The capabilities of our approach are illustrated through its application to an ammonia–water absorption cycle used in cooling and refrigeration applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paper submitted to AIChE 2012 Annual Meeting: Energy Efficiency by Process Intensification, Pittsburgh, PA, October 28-November 2, 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues related to the convergence of distillation columns (or column sections) are also maintained in the simulation environment. The model is formulated as a Generalized Disjunctive Programming (GDP) problem and solved using the logic based outer approximation algorithm without MINLP reformulation. Some examples involving from a single column to thermally coupled sequence or extractive distillation shows the performance of the new algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this report is to present the Crossdock Door Assignment Problem, which involves assigning destinations to outbound dock doors of Crossdock centres such that travel distance by material handling equipment is minimized. We propose a two fold solution; simulation and optimization of the simulation model - simulation optimization. The novel aspect of our solution approach is that we intend to use simulation to derive a more realistic objective function and use Memetic algorithms to find an optimal solution. The main advantage of using Memetic algorithms is that it combines a local search with Genetic Algorithms. The Crossdock Door Assignment Problem is a new domain application to Memetic Algorithms and it is yet unknown how it will perform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this report is to present the Crossdock Door Assignment Problem, which involves assigning destinations to outbound dock doors of Crossdock centres such that travel distance by material handling equipment is minimized. We propose a two fold solution; simulation and optimization of the simulation model - simulation optimization. The novel aspect of our solution approach is that we intend to use simulation to derive a more realistic objective function and use Memetic algorithms to find an optimal solution. The main advantage of using Memetic algorithms is that it combines a local search with Genetic Algorithms. The Crossdock Door Assignment Problem is a new domain application to Memetic Algorithms and it is yet unknown how it will perform.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.