994 resultados para simple algorithms
Resumo:
This thesis presents approximation algorithms for some NP-Hard combinatorial optimization problems on graphs and networks; in particular, we study problems related to Network Design. Under the widely-believed complexity-theoretic assumption that P is not equal to NP, there are no efficient (i.e., polynomial-time) algorithms that solve these problems exactly. Hence, if one desires efficient algorithms for such problems, it is necessary to consider approximate solutions: An approximation algorithm for an NP-Hard problem is a polynomial time algorithm which, for any instance of the problem, finds a solution whose value is guaranteed to be within a multiplicative factor of the value of an optimal solution to that instance. We attempt to design algorithms for which this factor, referred to as the approximation ratio of the algorithm, is as small as possible. The field of Network Design comprises a large class of problems that deal with constructing networks of low cost and/or high capacity, routing data through existing networks, and many related issues. In this thesis, we focus chiefly on designing fault-tolerant networks. Two vertices u,v in a network are said to be k-edge-connected if deleting any set of k − 1 edges leaves u and v connected; similarly, they are k-vertex connected if deleting any set of k − 1 other vertices or edges leaves u and v connected. We focus on building networks that are highly connected, meaning that even if a small number of edges and nodes fail, the remaining nodes will still be able to communicate. A brief description of some of our results is given below. We study the problem of building 2-vertex-connected networks that are large and have low cost. Given an n-node graph with costs on its edges and any integer k, we give an O(log n log k) approximation for the problem of finding a minimum-cost 2-vertex-connected subgraph containing at least k nodes. We also give an algorithm of similar approximation ratio for maximizing the number of nodes in a 2-vertex-connected subgraph subject to a budget constraint on the total cost of its edges. Our algorithms are based on a pruning process that, given a 2-vertex-connected graph, finds a 2-vertex-connected subgraph of any desired size and of density comparable to the input graph, where the density of a graph is the ratio of its cost to the number of vertices it contains. This pruning algorithm is simple and efficient, and is likely to find additional applications. Recent breakthroughs on vertex-connectivity have made use of algorithms for element-connectivity problems. We develop an algorithm that, given a graph with some vertices marked as terminals, significantly simplifies the graph while preserving the pairwise element-connectivity of all terminals; in fact, the resulting graph is bipartite. We believe that our simplification/reduction algorithm will be a useful tool in many settings. We illustrate its applicability by giving algorithms to find many trees that each span a given terminal set, while being disjoint on edges and non-terminal vertices; such problems have applications in VLSI design and other areas. We also use this reduction algorithm to analyze simple algorithms for single-sink network design problems with high vertex-connectivity requirements; we give an O(k log n)-approximation for the problem of k-connecting a given set of terminals to a common sink. We study similar problems in which different types of links, of varying capacities and costs, can be used to connect nodes; assuming there are economies of scale, we give algorithms to construct low-cost networks with sufficient capacity or bandwidth to simultaneously support flow from each terminal to the common sink along many vertex-disjoint paths. We further investigate capacitated network design, where edges may have arbitrary costs and capacities. Given a connectivity requirement R_uv for each pair of vertices u,v, the goal is to find a low-cost network which, for each uv, can support a flow of R_uv units of traffic between u and v. We study several special cases of this problem, giving both algorithmic and hardness results. In addition to Network Design, we consider certain Traveling Salesperson-like problems, where the goal is to find short walks that visit many distinct vertices. We give a (2 + epsilon)-approximation for Orienteering in undirected graphs, achieving the best known approximation ratio, and the first approximation algorithm for Orienteering in directed graphs. We also give improved algorithms for Orienteering with time windows, in which vertices must be visited between specified release times and deadlines, and other related problems. These problems are motivated by applications in the fields of vehicle routing, delivery and transportation of goods, and robot path planning.
Resumo:
Since the management of atrial fibrillation may be difficult in the individual patient, our purpose was to develop simple clinical recommendations to help the general internist manage this common clinical problem. Systematic review of the literature with evaluation of data-related evidence and framing of graded recommendations. Atrial fibrillation affects some 1% of the population in Western countries and is linked to a significant increase in morbidity and mortality. The management of atrial fibrillation requires individualised evaluation of the risks and benefits of therapeutic modalities, relying whenever possible on simple and validated tools. The two main points requiring a decision in clinical management are 1) whether or not to implement thromboembolic prevention therapy, and 2) whether preference should be given to a "rate control" or "rhythm control" strategy. Thromboembolic prophylaxis should be prescribed after individualised risk assessment: for patients at risk, oral anticoagulation with warfarin decreases the rate of embolic complications by 60% and aspirin by 20%, at the expense of an increased incidence of haemorrhagic complications. "Rate control" and "rhythm control" strategies are probably equivalent, and the choice should also be made on an individualised basis. To assist the physician in making his choices for the care of an atrial fibrillation patient we propose specific tables and algorithms, with graded recommendations. On the evidence of data from the literature we propose simple algorithms and tables for the clinical management of atrial fibrillation in the individual patient.
Resumo:
Pesticide risk indicators provide simple support in the assessment of environmental and health risks from pesticide use, and can therefore inform policies to foster a sustainable interaction of agriculture with the environment. For their relative simplicity, indicators may be particularly useful under conditions of limited data availability and resources, such as in Less Developed Countries (LDCs). However, indicator complexity can vary significantly, in particular between those that rely on an exposure–toxicity ratio (ETR) and those that do not. In addition, pesticide risk indicators are usually developed for Western contexts, which might cause incorrect estimation in LDCs. This study investigated the appropriateness of seven pesticide risk indicators for use in LDCs, with reference to smallholding agriculture in Colombia. Seven farm-level indicators, among which 3 relied on an ETR (POCER, EPRIP, PIRI) and 4 on a non-ETR approach (EIQ, PestScreen, OHRI, Dosemeci et al., 2002), were calculated and then compared by means of the Spearman rank correlation test. Indicators were also compared with respect to key indicator characteristics, i.e. user friendliness and ability to represent the system under study. The comparison of the indicators in terms of the total environmental risk suggests that the indicators not relying on an ETR approach cannot be used as a reliable proxy for more complex, i.e. ETR, indicators. ETR indicators, when user-friendly, show a comparative advantage over non-ETR in best combining the need for a relatively simple tool to be used in contexts of limited data availability and resources, and for a reliable estimation of environmental risk. Non-ETR indicators remain useful and accessible tools to discriminate between different pesticides prior to application. Concerning the human health risk, simple algorithms seem more appropriate for assessing human health risk in LDCs. However, further research on health risk indicators and their validation under LDC conditions is needed.
Resumo:
Earthworms are important organisms in soil communities and so are used as model organisms in environmental risk assessments of chemicals. However current risk assessments of soil invertebrates are based on short-term laboratory studies, of limited ecological relevance, supplemented if necessary by site-specific field trials, which sometimes are challenging to apply across the whole agricultural landscape. Here, we investigate whether population responses to environmental stressors and pesticide exposure can be accurately predicted by combining energy budget and agent-based models (ABMs), based on knowledge of how individuals respond to their local circumstances. A simple energy budget model was implemented within each earthworm Eisenia fetida in the ABM, based on a priori parameter estimates. From broadly accepted physiological principles, simple algorithms specify how energy acquisition and expenditure drive life cycle processes. Each individual allocates energy between maintenance, growth and/or reproduction under varying conditions of food density, soil temperature and soil moisture. When simulating published experiments, good model fits were obtained to experimental data on individual growth, reproduction and starvation. Using the energy budget model as a platform we developed methods to identify which of the physiological parameters in the energy budget model (rates of ingestion, maintenance, growth or reproduction) are primarily affected by pesticide applications, producing four hypotheses about how toxicity acts. We tested these hypotheses by comparing model outputs with published toxicity data on the effects of copper oxychloride and chlorpyrifos on E. fetida. Both growth and reproduction were directly affected in experiments in which sufficient food was provided, whilst maintenance was targeted under food limitation. Although we only incorporate toxic effects at the individual level we show how ABMs can readily extrapolate to larger scales by providing good model fits to field population data. The ability of the presented model to fit the available field and laboratory data for E. fetida demonstrates the promise of the agent-based approach in ecology, by showing how biological knowledge can be used to make ecological inferences. Further work is required to extend the approach to populations of more ecologically relevant species studied at the field scale. Such a model could help extrapolate from laboratory to field conditions and from one set of field conditions to another or from species to species.
Resumo:
A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms
Resumo:
National and international societies have published guidelines regarding glycaemic control in type-2 diabetes mellitus. Clinical studies have shown that glycaemic control of type-2 diabetes mellitus can be improved using simple algorithms for titration of insulin Glargine (Lantus). It is unclear, to what degree published guidelines are adopted in daily practice in Switzerland.
Resumo:
The concept of unreliable failure detector was introduced by Chandra and Toueg as a mechanism that provides information about process failures. This mechanism has been used to solve several agreement problems, such as the consensus problem. In this paper, algorithms that implement failure detectors in partially synchronous systems are presented. First two simple algorithms of the weakest class to solve the consensus problem, namely the Eventually Strong class (⋄S), are presented. While the first algorithm is wait-free, the second algorithm is f-resilient, where f is a known upper bound on the number of faulty processes. Both algorithms guarantee that, eventually, all the correct processes agree permanently on a common correct process, i.e. they also implement a failure detector of the class Omega (Ω). They are also shown to be optimal in terms of the number of communication links used forever. Additionally, a wait-free algorithm that implements a failure detector of the Eventually Perfect class (⋄P) is presented. This algorithm is shown to be optimal in terms of the number of bidirectional links used forever.
Resumo:
Sentiment and Emotion Analysis strongly depend on quality language resources, especially sentiment dictionaries. These resources are usually scattered, heterogeneous and limited to specific domains of appli- cation by simple algorithms. The EUROSENTIMENT project addresses these issues by 1) developing a common language resource representation model for sentiment analysis, and APIs for sentiment analysis services based on established Linked Data formats (lemon, Marl, NIF and ONYX) 2) by creating a Language Resource Pool (a.k.a. LRP) that makes avail- able to the community existing scattered language resources and services for sentiment analysis in an interoperable way. In this paper we describe the available language resources and services in the LRP and some sam- ple applications that can be developed on top of the EUROSENTIMENT LRP.
Resumo:
Moderate resolution remote sensing data, as provided by MODIS, can be used to detect and map active or past wildfires from daily records of suitable combinations of reflectance bands. The objective of the present work was to develop and test simple algorithms and variations for automatic or semiautomatic detection of burnt areas from time series data of MODIS biweekly vegetation indices for a Mediterranean region. MODIS-derived NDVI 250m time series data for the Valencia region, East Spain, were subjected to a two-step process for the detection of candidate burnt areas, and the results compared with available fire event records from the Valencia Regional Government. For each pixel and date in the data series, a model was fitted to both the previous and posterior time series data. Combining drops between two consecutive points and 1-year average drops, we used discrepancies or jumps between the pre and post models to identify seed pixels, and then delimitated fire scars for each potential wildfire using an extension algorithm from the seed pixels. The resulting maps of the detected burnt areas showed a very good agreement with the perimeters registered in the database of fire records used as reference. Overall accuracies and indices of agreement were very high, and omission and commission errors were similar or lower than in previous studies that used automatic or semiautomatic fire scar detection based on remote sensing. This supports the effectiveness of the method for detecting and mapping burnt areas in the Mediterranean region.
Resumo:
The sudden loss of the plasma magnetic confinement, known as disruption, is one of the major issue in a nuclear fusion machine as JET (Joint European Torus), Disruptions pose very serious problems to the safety of the machine. The energy stored in the plasma is released to the machine structure in few milliseconds resulting in forces that at JET reach several Mega Newtons. The problem is even more severe in the nuclear fusion power station where the forces are in the order of one hundred Mega Newtons. The events that occur during a disruption are still not well understood even if some mechanisms that can lead to a disruption have been identified and can be used to predict them. Unfortunately it is always a combination of these events that generates a disruption and therefore it is not possible to use simple algorithms to predict it. This thesis analyses the possibility of using neural network algorithms to predict plasma disruptions in real time. This involves the determination of plasma parameters every few milliseconds. A plasma boundary reconstruction algorithm, XLOC, has been developed in collaboration with Dr. D. Ollrien and Dr. J. Ellis capable of determining the plasma wall/distance every 2 milliseconds. The XLOC output has been used to develop a multilayer perceptron network to determine plasma parameters as ?i and q? with which a machine operational space has been experimentally defined. If the limits of this operational space are breached the disruption probability increases considerably. Another approach for prediction disruptions is to use neural network classification methods to define the JET operational space. Two methods have been studied. The first method uses a multilayer perceptron network with softmax activation function for the output layer. This method can be used for classifying the input patterns in various classes. In this case the plasma input patterns have been divided between disrupting and safe patterns, giving the possibility of assigning a disruption probability to every plasma input pattern. The second method determines the novelty of an input pattern by calculating the probability density distribution of successful plasma patterns that have been run at JET. The density distribution is represented as a mixture distribution, and its parameters arc determined using the Expectation-Maximisation method. If the dataset, used to determine the distribution parameters, covers sufficiently well the machine operational space. Then, the patterns flagged as novel can be regarded as patterns belonging to a disrupting plasma. Together with these methods, a network has been designed to predict the vertical forces, that a disruption can cause, in order to avoid that too dangerous plasma configurations are run. This network can be run before the pulse using the pre-programmed plasma configuration or on line becoming a tool that allows to stop dangerous plasma configuration. All these methods have been implemented in real time on a dual Pentium Pro based machine. The Disruption Prediction and Prevention System has shown that internal plasma parameters can be determined on-line with a good accuracy. Also the disruption detection algorithms showed promising results considering the fact that JET is an experimental machine where always new plasma configurations are tested trying to improve its performances.
Resumo:
Pavel Azalov - Recursion is a powerful technique for producing simple algorithms. It is a main topics in almost every introductory programming course. However, educators often refer to difficulties in learning recursion, and suggest methods for teaching recursion. This paper offers a possible solutions to the problem by (1) expressing the recursive definitions through base operations, which have been predefined as a set of base functions and (2) practising recursion by solving sequences of problems. The base operations are specific for each sequence of problems, resulting in a smooth transitions from recursive definitions to recursive functions. Base functions hide the particularities of the concrete programming language and allows the students to focus solely on the formulation of recursive definitions.
Resumo:
Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.
Resumo:
Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.
Resumo:
BACKGROUND: Tests for recent infections (TRIs) are important for HIV surveillance. We have shown that a patient's antibody pattern in a confirmatory line immunoassay (Inno-Lia) also yields information on time since infection. We have published algorithms which, with a certain sensitivity and specificity, distinguish between incident (< = 12 months) and older infection. In order to use these algorithms like other TRIs, i.e., based on their windows, we now determined their window periods. METHODS: We classified Inno-Lia results of 527 treatment-naïve patients with HIV-1 infection < = 12 months according to incidence by 25 algorithms. The time after which all infections were ruled older, i.e. the algorithm's window, was determined by linear regression of the proportion ruled incident in dependence of time since infection. Window-based incident infection rates (IIR) were determined utilizing the relationship 'Prevalence = Incidence x Duration' in four annual cohorts of HIV-1 notifications. Results were compared to performance-based IIR also derived from Inno-Lia results, but utilizing the relationship 'incident = true incident + false incident' and also to the IIR derived from the BED incidence assay. RESULTS: Window periods varied between 45.8 and 130.1 days and correlated well with the algorithms' diagnostic sensitivity (R(2) = 0.962; P<0.0001). Among the 25 algorithms, the mean window-based IIR among the 748 notifications of 2005/06 was 0.457 compared to 0.453 obtained for performance-based IIR with a model not correcting for selection bias. Evaluation of BED results using a window of 153 days yielded an IIR of 0.669. Window-based IIR and performance-based IIR increased by 22.4% and respectively 30.6% in 2008, while 2009 and 2010 showed a return to baseline for both methods. CONCLUSIONS: IIR estimations by window- and performance-based evaluations of Inno-Lia algorithm results were similar and can be used together to assess IIR changes between annual HIV notification cohorts.