115 resultados para silverleaf whitefly


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In zucchini, the use of row covers until flowering and the insect growth regulator (IGR) pyriproxyfen are effective methods of reducing the number of insects, especially silverleaf whitefly (Bemisia tabaci (Gennadius) Biotype B), on plants. We compared floating row covers (FRCs) up until flowering with silverleaf whitefly (SLW) introduced (FRC + SLW), or not introduced (FRC-only), or with introduction of SLW in open plots (SLW-only), or with introduction of SLW in open plots with IGR (SLW + IGR). FRC increased temperature and humidity compared with the uncovered treatments. Average fruit weight was less (P < 0.01) for the FRC + SLW treatment compared with the other treatments and the percentage of marketable fruit was less for the FRC + SLW than for the other three treatments. This result indicates that the use of either row covers or IGR controls whiteflies, reduces fruit damage and increases the size, weight, and quality of fruit, and may also control other sap-sucking insects. However, if SLW are already present on plants, the use of FRC may reduce predation and favour build up of SLW. Thus, FRC and IGR, if used judiciously, may provide an effective alternative to broad-spectrum pesticides in small-scale cucurbit production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve compatibility between chemical and biological controls, the use of selective insecticides such as insect growth regulators (IGRs) is crucial. In cucurbits, the use of pyriproxyfen (an IGR) has been shown by others to be an effective method of reducing the number of sap-sucking insects, especially silverleaf whitefly, Bemisia tabaci (Gennadius) Biotype B (SLW). Therefore, we compared pyriproxyfen and buprofezin (an IGR) with that of no treatment (control) in a bitter melon crop for the control of populations of SLW and for their effects on fruit production. Pyriproxyfen controlled SLW and tended to have heavier fruits than the control treatment and reduced the abundance of nymphs and exuvia. Buprofezin showed no evidence in controlling SLW compared with the pyriproxyfen and control treatments. Neither pyriproxyfen nor buprofezin had any effect on the number of harvested fruit or overall fruit yield, but the average weight per fruit was higher than the control treatment. Pyriproxyfen was effective in controlling whitefly populations in bitter melons, and both pyriproxyfen and buprofezin may have the potential to increase yield. Their longer-term use may increase predation by natural enemies as they are species-specific and could favour build up of natural enemies of SLW. Thus, the judicious use of pyriproxyfen may provide an effective alternative to broad-spectrum insecticides in small-scale cucurbit production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This final report ‘Development and promotion of IPM strategies for silverleaf whitefly in vegetables’ summarises the research and extension into development and implementation of IPM programs for silverleaf whitefly in vegetables. Chemical and biologicontrol for Silverleaf Whitefly in pumpkin, brassica, bean and sweet potatoes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silverleaf whitefly (SLW), Bemisia tabaci biotype B, is a major horticultural pest that costs Queensland vegetable growers millions of dollars in lost production and control measures each year. In the Bowen and Burdekin districts of North Queensland, the major cultivated SLW host crops are tomatoes, melons, green beans, pumpkins, eggplants, and cucumbers, which cover a total production area of approximately 6500 ha. Eretmocerus hayati, an effective SLW parasitoid, was imported into Australia by CSIRO in 2002 and released from quarantine in 2004. In 2006, DAFF established a mass-rearing unit for E. hayati at Bowen Research Station to provide E. hayati for release on vegetable farms within its SLW integrated pest management research program. A total of 1.3 million E. hayati were released over three seasons on 34 vegetable farms in the Bowen and Burdekin districts (October 2006 to December 2008). Post-release samplings were conducted across the release area over this time period with parasitism levels recorded in tomatoes, melons, beans, eggplants, pumpkins, and various SLW weed hosts. Sample data show that E. hayati established at most release sites as well as some non-release sites, indicating natural spread. Overall results from these three years of evaluation clearly demonstrated that E hayati releases played a significant role in SLW control. In most crops sampled, E hayati exerted between 30 and 80% parasitism. Even in regularly sprayed crops, such as tomato and eggplant, E. hayati was able to achieve an overall average parasitism of 45%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The silverleaf whitefly, Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae), is considered one of the most important pests of cowpea (Vigna unguiculata L. Walp.), limiting the productivity of this crop worldwide. Chemical control is still the main strategy for the management of populations of this insect. However, due to the harmful effects of pesticides on the environment and to humans, less injurious alternatives have been investigated. Along this line, the use of resistant genotypes can be a valuable tool for the control of the silverleaf whitefly. In this paper, we investigate some biological aspects of B. tabaci biotype B confined on 14 genotypes of cowpea. We evaluated the incubation period, egg viability, duration of nymphal stages, total duration of the juvenile phase, instar mortality and total mortality of the immature stage. The genotype MNC 99-541 F21 exhibited antibiosis against the whitefly, prolonging the lifecycle of the insect. The genotypes Canapu, BRS-Urubuquara and TE97-304 G-4 also exhibited antibiosis, causing high nymphal mortality. These results may help in breeding programmes to develop cowpea lines with resistance to B. tabaci biotype B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B is one of the most limiting pests of tomato crops in the world. Tomato yield is currently dependent on the use of pesticides, which are problematic to farmers, consumers and the environment. A promising alternative to reduce the harmful effects caused by the indiscriminated use of synthetic insecticides is the use of insecticides of botanical origin. This study aimed to evaluate the effect of 3% (w/v) aqueous extracts from different structures of thirteen botanical species on the behavior of B. tabaci biotype B adults, as well as insecticidal activity of such aqueous extracts on B. tabaci eggs, nymphs, and adults infesting tomato plants. A distilled water solution was used as a negative control, and thiamethoxam insecticide (18 g/100 L of water) as a positive control. Leaf extract of Toona ciliata was observed to have the most efficient inhibitory effect in tests of extracts on whitefly behavior. Furthermore, the use of leaf extract of Toona ciliata led to the most drastic reduction in the number of adults and eggs on tomato leaflets. Leaf extract of Piper aduncum led to the greatest observed ovicidal effect (78.00% of non-hatched nymphs); however it was not effective against nymphs and adults. The leaf extracts of Trichilia pallida, Trichilia casaretti, and Toona ciliata showed the highest control indexes (67.9, 60.3, and 55.1%, respectively). For adults mortality, T. pallida was the most effective (72.8%). Our results indicate that application of extracts of T. pallida, T. ciliata, and T. casaretti are promising strategies to manage B. tabaci biotype B on tomato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silverleaf whitefly (SLW) is a major late season pest of cotton due to its potential to contaminate cotton lint with honeydew. To prevent this, management is often reliant on the use of insecticides to control SLW populations. With selection pressure SLW develop resistance to insecticides they are exposed to, resulting in spray failures. Our lab tests resistance levels in SLW populations collected from across the cotton industry. In this presentation I will provide an update of emerging SLW resistance issues the cotton industry is facing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data on seasonal population abundance of Bemisia tabaci biotype B (silverleaf whitefly (SLW)) in Australian cotton fields collected over four consecutive growing seasons (2002/2003-2005/2006) were used to develop and validate a multiple-threshold-based management and sampling plan. Non-linear growth trajectories estimated from the field sampling data were used as benchmarks to classify adult SLW field populations into six density-based management zones with associated control recommendations in the context of peak flowering and open boll crop growth stages. Control options based on application of insect growth regulators (IGRs) are recommended for high-density populations (>2 adults/leaf) whereas conventional (non-IGR) products are recommended for the control of low to moderate population densities. A computerised re-sampling program was used to develop and test a binomial sampling plan. Binomial models with thresholds of T=1, 2 and 3 adults/leaf were tested using the field abundance data. A binomial plan based on a tally threshold of T=2 adults/leaf and a minimum sample of 20 leaves at nodes 3, 4 or 5 below the terminal is recommended as the most parsimonious and practical sampling protocol for Australian cotton fields. A decision support guide with management zone boundaries expressed as binomial counts and control options appropriate for various SLW density situations is presented. Appropriate use of chemical insecticides and tactics for successful field control of whiteflies are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest-crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a first step to better targeting the activities of a project for improving management of western flower thrips, Frankliniella occidentialis, (WFT) in field grown vegetable crops, we surveyed growers, consultants and other agribusiness personnel in two regions of Queensland. Using face-to-face interviews, we collected data on key pests and measures used to manage them, the importance of WFT and associated viral diseases, sources of pest management information and additional skills and knowledge needed by growers and industry. Responses were similar in the two regions. While capsicum growers in one northern Queensland district had suffered serious losses from WFT damage in 2002, in general the pest was not seen as a major problem. In cucurbit crops, the silverleaf whitefly (Bemisia tabaci biotype B) was considered the most difficult insect pest to manage. Pest control tactics were largely based on pesticides although many respondents mentioned non-chemical methods such as good farm hygiene practices, control of weed hosts and regular crop monitoring, particularly when prompted. Respondents wanted to know more about pest identification, biology and damage, spray application and the best use of insecticides. Natural enemies were mentioned infrequently. Keeping up to date with available pesticide options, availability of new chemicals and options for a district-wide approach to managing pests emerged as key issues. Growers identified agricultural distributors, consultants, Queensland Department of Primary Industries staff, other growers and their own experience as important sources of information. Field days, workshops and seminars did not rank highly. Busy vegetable growers wanted these activities to be short and relevant, and preferred to be contacted by post and facsimile rather than email. In response to these results, we are focusing on three core, interrelated project extension strategies: (i) short workshops, seminars and farm walks to provide opportunities for discussion, training and information sharing with growers and their agribusiness advisors; (ii) communication via newsletters and information leaflets; (iii) support for commercialisation of services.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system, population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cucurbit crops host a range of serious sap-sucking insect pests, including silverleaf whitefly (SLW) and aphids, which potentially represent considerable risk to the Australian horticulture industry. These pests are extremely polyphagous with a wide host range. Chemical control is made difficult due to resistance and pollution, and other side-effects are associated with insecticide use. Consequently, there is much interest in maximising the role of biological control in the management of these sap-sucking insect pests. This study aimed to evaluate companion cropping alongside cucurbit crops in a tropical setting as a means to increase the populations of beneficial insects and spiders so as to control the major sap-sucking insect pests. The Population of beneficial and harmful insects, with a focus on SLW and aphids, and other invertebrates were sampled weekly oil four different crops which could be used for habitat manipulation: Goodbug Mix (GBM; a proprietary seed Mixture including self-sowing annual and perennial herbaceous flower species); lablab (Lablab purpureus L. Sweet); lucerne (Medicago sativa L.); and niger (Guizotia abyssinica (L.f.) Cass.). Lablab hosted the highest numbers of beneficial insects (larvae and adults of lacewing (Mallada signata (Schneider)), ladybird beetles (Coccinella transversalis Fabricius) and spiders) while GBM hosted the highest numbers of European bees (Apis mellifera Linnaeus) and spiders. Lucerne and niger showed little promise in hosting beneficial insects, but lucerne hosted significantly more spiders (double the numbers) than niger. Lucerne hosted significantly more of the harmful insect species of aphids (Aphis gossypii (Glover)) and Myzus persicae (Sulzer)) and heliothis (Heliothis armigera Hubner). Niger hosted significantly more vegetable weevils (Listroderes difficillis (Germar)) than the other three species. Therefore, lablab and GBM appear to be viable options to grow within cucurbits or as field boundary crops to attract and increase beneficial insects and spiders for the control of sap-sucking insect pests. Use of these bio-control strategies affords the opportunity to minimise pesticide usage and the risks associated with pollution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cotton leaf curl disease (CLCuD) is a major biosecurity threat to the Australian cotton industry. This proposal seeks cross-industry investment from the cotton (CRDC) and horticulture (HAL) industries to address the threat of exotic whitefly-transmitted viruses. Testing of silverleaf whitefly, the vector of CLCuD, could provide an alternative, cheaper strategy for early warning disease surveillance compared to surveys for disease symptoms. Control of whitefly-transmitted viruses in Australia and overseas will be reviewed to produce an integrated management package for their control in Australia. This will also involve a workshop with key stakeholders and selected overseas participants, to develop a working party to help formulate this package.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extractive components obtained from milling residues of white cypress were studied for chemical identity and bioactivity with a view to developing a commercial use for these components, thus increasing the value of the residues and improving the economics of cypress sawn wood production. Extracts obtained by solvent or steam extraction techniques from cypress sawdust were each fractionated by a range of techniques into groups of similar compounds. Crude extracts and fractions were screened against a range of agricultural pests and diseases, including two fungi, subterranean termites, fruit spotting bugs, two-spotted mites, thrips, heliothis, banana scab moths, silverleaf whiteflies, cattle tick adults and larvae, and ruminant gastrointestinal nematodes. Additional screening was undertaken where encouraging results were achieved, for two-spotted mites, thrips, silverleaf whiteflies, cattle tick adults and ruminant gastrointestinal nematodes. After considering degrees of efficacy against, and economic importance of, the agricultural pests, and likely production costs of extracts and fractions, the crude extract (oil) produced by steam distillation was chosen for further study against silverleaf whitefly. A useful degree of control was achievable when this oil was applied to tomato or eggplant at 0.1%, with much less harmful effects on a beneficial insect. Activity of the oil against silverleaf whitefly was undiminished 3.5 years after it was generated. There was little benefit from supplementing the extract with co-formulated paraffinic oil. From the steam distilled oil, fifty-five compounds were characterised, thirty-five compounds representing 92.478 % of the oil, with guaiol (20.8%) and citronellic acid (15.9%) most abundant. These two compounds, and a group of oxygenated compounds containing bulnesol and a range of eudesmols, were found to account for most of the activity against silverleaf whitefly. This application was recommended for first progression to commercialisation.