999 resultados para silica tube


Relevância:

60.00% 60.00%

Publicador:

Resumo:

On lowering the oxygen potential, the tetragonal phase of YBa2Cu3O7−δ was found to decompose into a mixture of Y2BaCuO5, BaCuO2 and BaCu2O2 in the temperature range 773–1173 K. The 123 compound was contained in a closed crucible of yttria-stabilized zirconia in the temperature range 773–1073 K. Oxygen was removed in small increments by coulometric titration through the solid electrolyte crucible at constant temperature. The oxygen potential was calculated from the open circuit e.m.f. of the solid state cell after successive titrations. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The decomposition of the 123 compound manifested as a plateau in oxygen potential. The decomposition products were identified by X-ray diffraction. At temperatures above 1073 K there was some evidence of reaction between the 123 compound, solid electrolyte crucible and platinum. For measurements above 1073 K, the 123 compound was contained in a magnesia crucible placed in a closed outer silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid state cell based on yttria-stabilized zirconia which served both as a pump and sensor. The lower oxygen potential limit for the stability of the 123 compound is given by View the MathML source The oxygen non-stoichiometric parameter δ for the 123 compound has a value of 0.98 (View the MathML source) at dissociation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The variation of equilibrium oxygen potential with oxygen concentration inYBa 2Cu3O7-δhas been measured in the temperature range of 773 to 1223 K. For temperatures up to 1073 K, the oxygen content of theYBa 2Cu3O7-δsample, held in a stabilized-zirconia crucible, was altered by coulometric titration. The compound was in contact with the electrolyte, permitting direct exchange of oxygen ions. For measurements above 1073 K, the oxide was contained in a magnesia crucible placed inside a closed silica tube. The oxygen potential in the gas phase above the 123 compound was controlled and measured by a solid-state cell based on yttria-stabilized zirconia, which served both as a pump and sensor. Pure oxygen at a pressure of 1.01 × 105 Pa was used as the reference electrode. The oxygen pressure over the sample was varied from 10-1 to 105 Pa. The oxygen concentrations of the sample equilibrated with pure oxygen at 1.01 × 105 Pa at different temperatures were determined after quenching in liquid nitrogen by hydrogen reduction at 1223 K. The plot of chemical potential of oxygen as a function of oxygen non-stoichiometry shows an inflexion at δ ∼ 0.375 at 873 K. Data at 773 K indicate tendency for phase separation at lower temperatures. The partial enthalpy and entropy of oxygen derived from the temperature dependence of electromotive force (emf ) exhibit variation with composition. The partial enthalpy for °= 0.3, 0.4, and 0.5 also appears to be temperature dependent. The results are discussed in comparison with the data reported in the literature. An expression for the integral free energy of formation of YBa2Cu3O6.5 is evaluated based on measurements reported in the literature. By integration of the partial Gibbs’ energy of oxygen obtained in this study, the variation of integral property with oxygen concentration is obtained at 873 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The features of the Furnace Chemical Vapor Deposition (FCVD) method of manufacturing preforms for special optical fibers are considered. It is shown that misalignment of substrate silica tube and furnace hole axes has a negative effect on the quality of fabricated preforms, leading to angular and radial asymmetry of the refractive index profile. Ways of getting rid of this and other disadvantages of the FCVD method are described. Some advantages of the FCVD method over the MCVD method are shown. It was demonstrated that the FCVD method, despite some drawbacks, allows to manufacture high-quality fiber preforms with good symmetry of the refractive index profile, and thus it is promising for fabrication of dispersion, dispersion varying and active fibers. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most studies on the characterisation of deposits on heat exchangers have been based on bulk analysis, neglecting the fine structural features and the compositional profiles of layered deposits. Attempts have been made to fully characterise a fouled stainless steel tube obtained from a quintuple Roberts evaporator of a sugar factory using X-ray diffraction and scanning electron microscopy techniques. The deposit contains three layers at the bottom of the tube and two layers on the other sections and is composed of hydroxyapatite, calcium oxalate dihydrate and an amorphous material. The proportions of these phases varied along the tube height. Energy-dispersive spectroscopy and XRD analysis on the surfaces of the outermost and innermost layers showed that hydroxyapatite was the major phase attached to the tube wall, while calcium oxalate dihydrate (with pits and voids) was the major phase on the juice side. Elemental mapping of the cross-sections of the deposit revealed the presence of a mineral, Si-Mg-Al-Fe-O, which is probably a silicate mineral. Reasons for the defects in the oxalate crystal surfaces, the differences in the crystal size distribution from bottom to the top of the tube and the composite fouling process have been postulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to the chemical nature of the surface, the dimensions of the confining host exert a significant influence on confined protein structures; this results in immense biological implications, especially those concerning the enzymatic activities of the protein. This study probes the structure of hemoglobin (Hb), a model protein, confined inside silica tubes with pore diameters that vary by one order of magnitude (approximate to 20-200 nm). The effect of confinement on the protein structure is probed by comparison with the structure of the protein in solution. Small-angle neutron scattering (SANS), which provides information on protein tertiary and quaternary structures, is employed to study the influence of the tube pore diameter on the structure and configuration of the confined protein in detail. Confinement significantly influences the structural stability of Hb and the structure depends on the Si-tube pore diameter. The high radius of gyration (R-g) and polydispersity of Hb in the 20 nm diameter Si-tube indicates that Hb undergoes a significant amount of aggregation. However, for Si-tube diameters greater or equal to 100 nm, the R-g of Hb is found to be in very close proximity to that obtained from the protein data bank (PDB) reported structure (R-g of native Hb=23.8 angstrom). This strongly indicates that the protein has a preference for the more native-like non-aggregated state if confined inside tubes of diameter greater or equal to 100 nm. Further insight into the Hb structure is obtained from the distance distribution function, p(r), and ab initio models calculated from the SANS patterns. These also suggest that the Si-tube size is a key parameter for protein stability and structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work demonstrates the successful application of automated biocompatible in-tube solid-phase microextraction coupled with liquid chromatography (in-tube SPME/LC) for determination of interferon alpha(2a) (IFN alpha(2a)) in plasma samples for therapeutic drug monitoring. A restricted access material (RAM, protein-coated silica) was employed for preparation of a lab-made biocompatible in-tube SPME capillary that enables the direct injection of biological fluids as well as the simultaneous exclusion of macromolecules by chemical diffusion barrier and drug pre-concentration. The in-tube SPME variables, such as sample volume, draw/eject volume, number of draw-eject cycles, and desorption mode were optimized, to improve the sensitivity of the proposed method. The IFN alpha(2a) analyses in plasma sample were carried out within 25 min (sample preparation and LC analyses). The response of the proposed method was linear over a dynamic range, from 0.06 to 3.0 MIU mL(-1), with correlation coefficient equal to 0.998. The interday precision of the method presented coefficient of variation lower than 8%. The proposed automated method has adequate analytical sensitivity and selectivity for determination of IFN alpha(2a) in plasma samples for therapeutic drug monitoring. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an analysis of membrane reactor (MR) operation and design for enhanced hydrogen production from the water gas shift (WGS) reaction. It has been established that membrane reactors can enhance an equilibrium limited reaction through product separation. However, the detailed effects of reactor setup, membrane configuration and catalyst volume have yet to be properly analysed for this reaction. This paper investigates new ideas for membrane reactors such as the development of new catalytic films, for improved interaction between the reaction and separation zones. Current membrane reactors utilise a packed bed of catalyst within the membrane tube, utilising a large volume of catalyst to drive reaction. This is still inefficient and provides only limited benefits over conventional WGS reactors. New reactor configurations look to optimise the interactive effects between reaction and separation to provide improved operation. In this paper, thin film catalysts were produced using dip coating and spray coating techniques. This technique produced catalyst coatings with good thickness, though the abrasion strength of the dip coated catalyst was quite low. The catalyst was tested in a packed bed reactor for temperature activity at low temperatures and catalyst activity at varying levels of excess water

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050°C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1μg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated. Silica nanowires were observed experimentally to determine how their physical and chemical properties could be tuned for integration into existing sensing structures. Growth kinetic experiments performed using gold and palladium catalysts at 1050 ˚C for 60 minutes in an open-tube furnace yielded dense and consistent silica nanowire growth. This consistent growth led to the development of growth model fitting, through use of the Maximum Likelihood Estimation (MLE) and Bayesian hierarchical modeling. Transmission electron microscopy studies revealed the nanowires to be amorphous and X-ray diffraction confirmed the composition to be SiO2 . Silica nanowires were monitored in epithelial breast cancer media using Impedance spectroscopy, to test biocompatibility, due to potential in vivo use as a diagnostic aid. It was found that palladium catalyzed silica nanowires were toxic to breast cancer cells, however, nanowires were inert at 1µg/mL concentrations. Additionally a method for direct nanowire integration was developed that allowed for silica nanowires to be grown directly into interdigitated sensing structures. This technique eliminates the need for physical nanowire transfer thus preserving nanowire structure and performance integrity and further reduces fabrication cost. Successful nanowire integration was physically verified using Scanning electron microscopy and confirmed electrically using Electrochemical Impedance Spectroscopy of immobilized Prostate Specific Antigens (PSA). The experiments performed above serve as a guideline to addressing the metallurgic challenges in nanoscale integration of materials with varying composition and to understanding the effects of nanomaterials on biological structures that come in contact with the human body.