999 resultados para shoreline change
Resumo:
Recent-past shoreline changes on reef islands are now subject to intensified monitoring via remote sensing data. Based on these data, rates of shoreline change calculated from long-term measurements (decadal) are often markedly lower than recent short-term rates (over a number of years). This observation has raised speculations about the growing influence of sea-level rise on reef island stability. This observation, however, can also be explained if we consider two basic principles of geomorphology and sedimentology. For Takú Atoll, Papua New Guinea, we show that natural shoreline fluctuations of dynamic reef islands have a crucial influence on the calculation of short-term rates of change. We analyze an extensive dataset of multitemporal shoreline change rates from 1943 to 2012 and find that differing rates between long- and short-term measurements consistently reflect the length of the observation interval. This relationship appears independent from the study era and indicates that reef islands were equally dynamic during the early periods of analysis, i.e. before the recent acceleration of sea-level rise. Consequently, we suggest that high rates of shoreline change calculated from recent short-term observations may simply result from a change in temporal scale and a shift from geomorphic equilibrium achieved over cyclic time towards an apparent disequilibrium during shorter periods of graded time. This new interpretation of short- and long-term shoreline change rates has important implications for the ongoing discussion about reef island vulnerability, showing that an observed jump from low to high rates of change may be independent from external influences, including but not limited to sea-level rise.
Resumo:
Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying "outlier" shoreline positions. On top of natural beach variability observed along the reweighted beach sections, we found that one third of the analyzed islands show a statistically significant decrease in reweighted beach width since 1943. The total loss of beach area for all islands corresponds to 44% of the initial beach area. Variable shoreline trajectories suggest that changes in beach width on Takú Atoll are dependent on local control (that is, human activity and longshore sediment transport). Our results show that remote imagery with a low sampling frequency may be sufficient to characterize prominent morphological changes in planform beach configuration of reef islands.
Resumo:
Cover title.
Resumo:
This dissertation combines three separate studies that measure coastal change using airborne laser data. The initial study develops a method for measuring subaerial and subaqueous volume change incrementally alongshore, and compares those measurements to shoreline change in order to quantify their relationship in Palm Beach County, Florida. A poor correlation (R2 = 0.39) was found between shoreline and volume change before the hurricane season in the northern section of Palm Beach County because of beach nourishment and inlet dynamics. However, a relatively high R2 value of 0.78 in the southern section of Palm Beach County was found due to little disturbance from tidal inlets and coastal engineering projects. The shoreline and volume change caused by the 2004 hurricane season was poorly correlated with R 2 values of 0.02 and 0.42 for the north and south sections, respectively. The second study uses airborne laser data to investigate if there is a significant relationship between shoreline migration before and after Hurricane Ivan near Panama City, Florida. In addition, the relationship between shoreline change and subaerial volume was quantified and a new method for quantifying subaqueous sediment change was developed. No significant spatial relationship was found between shoreline migration before and after the hurricane. Utilization of a single coefficient to represent all relationships between shoreline and subaerial volume change was found to be problematic due to the spatial variability in the linear relationship. Differences in bathymetric data show only a small portion of sediment was transported beyond the active zone and most sediment remained within the active zone despite the occurrence of a hurricane. The third study uses airborne laser bathymetry to measure the offshore limit of change, and compares that location with calculated depth of closures and subaqueous geomorphology. There appears to be strong geologic control of the depth of closure in Broward and Miami-Dade Counties. North of Hillsboro Inlet, hydrodynamics control the geomorphology which in turn indicates the location of the depth of closure.
Resumo:
This dissertation combines three separate studies that measure coastal change using airborne laser data. The initial study develops a method for measuring subaerial and subaqueous volume change incrementally alongshore, and compares those measurements to shoreline change in order to quantify their relationship in Palm Beach County, Florida. A poor correlation (R2 = 0.39) was found between shoreline and volume change before the hurricane season in the northern section of Palm Beach County because of beach nourishment and inlet dynamics. However, a relatively high R2 value of 0.78 in the southern section of Palm Beach County was found due to little disturbance from tidal inlets and coastal engineering projects. The shoreline and volume change caused by the 2004 hurricane season was poorly correlated with R2 values of 0.02 and 0.42 for the north and south sections, respectively. The second study uses airborne laser data to investigate if there is a significant relationship between shoreline migration before and after Hurricane Ivan near Panama City, Florida. In addition, the relationship between shoreline change and subaerial volume was quantified and a new method for quantifying subaqueous sediment change was developed. No significant spatial relationship was found between shoreline migration before and after the hurricane. Utilization of a single coefficient to represent all relationships between shoreline and subaerial volume change was found to be problematic due to the spatial variability in the linear relationship. Differences in bathymetric data show only a small portion of sediment was transported beyond the active zone and most sediment remained within the active zone despite the occurrence of a hurricane. The third study uses airborne laser bathymetry to measure the offshore limit of change, and compares that location with calculated depth of closures and subaqueous geomorphology. There appears to be strong geologic control of the depth of closure in Broward and Miami-Dade Counties. North of Hillsboro Inlet, hydrodynamics control the geomorphology which in turn indicates the location of the depth of closure.
Resumo:
Progressive increases in storm intensities and extreme wave heights have been documented along the U.S. West Coast. Paired with global sea level rise and the potential for an increase in El Niño occurrences, these trends have substantial implications for the vulnerability of coastal communities to natural coastal hazards. Community vulnerability to hazards is characterized by the exposure, sensitivity, and adaptive capacity of human-environmental systems that influence potential impacts. To demonstrate how societal vulnerability to coastal hazards varies with both physical and social factors, we compared community exposure and sensitivity to storm-induced coastal change scenarios in Tillamook (Oregon) and Pacific (Washington) Counties. While both are backed by low-lying coastal dunes, communities in these two counties have experienced different shoreline change histories and have chosen to use the adjacent land in different ways. Therefore, community vulnerability varies significantly between the two counties. Identifying the reasons for this variability can help land-use managers make decisions to increase community resilience and reduce vulnerability in spite of a changing climate. (PDF contains 4 pages)