1000 resultados para shikimic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A better method for determination of shikimate in plant tissues is needed to monitor exposure of plants to the herbicide glyphosate [N-(phosphonomethyl)glycine] and to screen the plant kingdom for high levels of this valuable phytochemical precursor to the pharmaceutical oseltamivir. A simple, rapid, and efficient method using microwave-assisted extraction (MWAE) with water as the extraction solvent was developed for the determination of shikimic acid in plant tissues. High performance liquid chromatography was used for the separation of shikimic acid, and chromatographic data were acquired using photodiode array detection. This MWAE technique was successful in recovering shikimic acid from a series of fortified plant tissues at more than 90% efficiency with an interference-free chromatogram. This allowed the use of lower amounts of reagents and organic solvents, reducing the use of toxic and/or hazardous chemicals, as compared to currently used methodologies. The method was used to determine the level of endogenous shikimic acid in several species of Brachiaria and sugarcane (Saccharum officinarum) and on B. decumbens and soybean (Glycine max) after treatment with glyphosate. The method was sensitive, rapid and reliable in all cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oseltamivir phosphate is a potent viral inhibitor produced from shikimic acid extracted from seeds of Ilicium verum, the most important natural source. With the site of action 5-enolpyruvylshikimate-3-phosphate synthase (EPSP), glyphosate is the only compound capable of inhibiting its activity with the consequent accumulation of shikimic acid in plants. Corn and soybean plants were sprayed with reduced rates of glyphosate (0.0 to 230.4 g a.i. ha¹) and shikimic acid content in the dry mass was determined by HPLC 3, 7 and 10 days after application. Results showed shikimic acid accumulation in dry mass with increases of up to 969% in corn and 33,000% on soybeans, with peak concentrations 3 days after treatment (DAT). Industrial feasibility for shikimic acid production, combined with favorable climatic conditions for growing corn and soybean in virtually all over Brazil, favor the use of reduced rates of glyphosate in shikimic acid biosynthesis, with potential for use as an inducer in exploration of alternative sources for production of oseltamivir phosphate with low environmental impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study has aimed to develop a method for simultaneous extraction and determination by liquid chromatography and mass spectrometry (LC-MS/MS) of glyphosate, aminomethylphosphonic acid (AMPA), shikimic acid, quinic acid, phenylalanine, tyrosine and tryptophan. For the joint analysis of these compounds the best conditions of ionization in mass spectrometry and for chromatographic separation of the compounds were selected. Calibration curves and linearity ranges were also determined for each compound. Different extraction systems of the compounds were tested from plant tissues collected from sugarcane (Saccharum officinarum) and eucalyptus (Eucalyptus urophylla platiphylla) plants two days after the glyphosate application at the dose of 720 g a.e. ha-1. The plant material was dried in a forced air circulation drying oven and in a lyophilizer, and subsequently the extractions with acidified water (pH 2.5), acetonitrile-water (50:50) [v/v] and methanol-water (50:50) [v/v] were tested. To verify the recovery of the compounds in the plant matrix with acidified water as an extracting solution, the samples were fortified with a solution containing the mixture of the different analytical standards present so that this one presented the same levels of 50 and 100 μg L-1 of each compound. All experiments were conducted with three replicates. The analytical method developed was efficient for compounds quantifications. The extraction from the samples dried in an oven and using acidified water allowed better extraction levels for all compounds. The recovery levels of the compounds in the fortified samples with known amounts of each compound for both plants samples were rather satisfactory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations into the quinate to shikimate transformation have been carried out, the results of which have been exploited in the synthesis of a novel difluoromethylene homologue of shikimic acid from (-)-quinic acid. Martin's sulfurane {Ph2S[OC(CF3)(2)Ph](2)} was the reagent of choice for the key dehydration step of this synthesis. The results of investigations into the synthesis of the important natural product analogue, 6,6-difluoroshikimic acid are also reported. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of shikimate kinase from Mycobacterium tuberculosis (MtSK) complexed with MgADP and shikimic acid (shikimate) has been determined at 2.3 Angstrom resolution, clearly revealing the amino acid residues involved in shikimate binding. In MtSK, the Glu61 strictly conserved in SK forms a hydrogen bond and salt-bridge with Arg58 and assists in positioning the guanidinium group of Arg58 for shikimate binding. The carboxyl group of shikimate interacts with Arg58, Gly81, and Arg136, and hydroxyl groups with Asp34 and Gly80. The crystal structure of MtSK-MgADP-shikimate will provide crucial information for elucidation of the mechanism of SK-catalyzed reaction and for the development of a new generation of drugs against tuberculosis. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis made a resurgence in the mid-1980s and now kills approximately 3 million people a year. The re-emergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons and the proliferation of multi-drug-resistant strains have created a need to develop new drugs. Shikimate kinase and other enzymes in the shikimate pathway are attractive targets for development of non-toxic antimicrobial agents, herbicides and anti-parasitic drugs, because the pathway is essential in these species whereas it is absent from mammals. The crystal structure of shikimate kinase from Mycobacterium tuberculosis (MtSK) complexed with MgADP and shikimic acid ( shikimate) has been determined at 2.3 Angstrom resolution, clearly revealing the amino-acid residues involved in shikimate binding. This is the first three-dimensional structure of shikimate kinase complexed with shikimate. In MtSK, the Glu61 residue that is strictly conserved in shikimate kinases forms a hydrogen bond and salt bridge with Arg58 and assists in positioning the guanidinium group of Arg58 for shikimate binding. The carboxyl group of shikimate interacts with Arg58, Gly81 and Arg136 and the hydroxyl groups interact with Asp34 and Gly80. The crystal structure of MtSK-MgADP-shikimate will provide crucial information for the elucidation of the mechanism of the shikimate kinase-catalyzed reaction and for the development of a new generation of drugs against tuberculosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric soluble organic aerosol material can become solid or semi-solid. Due to increasing viscosity and decreasing diffusivity, this can impact important processes such as gas uptake and reactivity within aerosols containing such substances. This work explores the dependence of shikimic acid ozonolysis on humidity and thereby viscosity. Shikimic acid, a proxy for oxygenated reactive organic material, reacts with O3 in a Criegee-type reaction. We used an environmental microreactor embedded in a scanning transmission X-ray microscope (STXM) to probe this oxidation process. This technique facilitates in situ measurements with single micron-sized particles and allows to obtain near-edge X-ray absorption fine structure (NEXAFS) spectra with high spatial resolution. Thus, the chemical evolution of the interior of the particles can be followed under reaction conditions. The experiments show that the overall degradation rate of shikimic acid is depending on the relative humidity in a way that is controlled by the decreasing diffusivity of ozone with decreasing humidity. This decreasing diffusivity is most likely linked to the increasing viscosity of the shikimic acid–water mixture. The degradation rate was also depending on particle size, most congruent with a reacto-diffusion limited kinetic case where the reaction progresses only in a shallow layer within the bulk. No gradient in the shikimic acid concentration was observed within the bulk material at any humidity indicating that the diffusivity of shikimic acid is still high enough to allow its equilibration throughout the particles on the timescale of hours at higher humidity and that the thickness of the oxidized layer under dry conditions, where the particles are solid, is beyond the resolution of STXM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A better method for determination of shikimate in plant tissues is needed to monitor exposure of plants to the herbicide glyphosate [N-(phosphonomethyl)glycine] and to screen the plant kingdom for high levels of this valuable phytochemical precursor to the pharmaceutical oseltamivir. A simple, rapid, and efficient method using microwave-assisted extraction (MWAE) with water as the extraction solvent was developed for the determination of shikimic acid in plant tissues. High performance liquid chromatography was used for the separation of shikimic acid, and chromatographic data were acquired using photodiode array detection. This MWAE technique was successful in recovering shikimic acid from a series of fortified plant tissues at more than 90% efficiency with an interference-free chromatogram. This allowed the use of lower amounts of reagents and organic solvents, reducing the use of toxic and/or hazardous chemicals, as compared to currently used methodologies. The method was used to determine the level of endogenous shikimic acid in several species of Brachiaria and sugarcane (Saccharum officinarum) and on B. decumbens and soybean (Glycine max) after treatment with glyphosate. The method was sensitive, rapid and reliable in all cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Glyphosate is used to control weeds in citrus orchards, and accidental spraying or wind drift onto the seedlings may cause growth arrest owing to metabolism disturbance. Two experiments were carried out to investigate the effect of non-lethal rates (0, 180, 360 and 720 g Al ha(-1)) of glyphosate on four-month-old `Cravo` lime, Citrus limonia (L.) Osbeck, seedlings. Photosynthesis and the concentrations of shikimic acid, total free amino acids and phenolic acids were evaluated. RESULTS: Only transitory effects were observed in the! contents of shikimate and total free amino acids. No visual effects were observed. CONCLUSION: The present study showed that glyphosate at non-lethal rates, which is very usual when accidental spraying or wind drift occurs in citrus orchard, did not cause severe metabolic damage in `Cravo` lime seedlings. (C) 2009 Society of Chemical Industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diagnosing herbicide-resistant weed populations is the first step for herbicide resistance management. Monitoring the nature, distribution, and abundance of the resistant plants in fields demands efficient and effective screening tests. Different glyphosate resistant populations of Lolium multiflorum (VA) and L. rigidum (C) were used in assays for testing their effectiveness to detect herbicide resistance. According to a Petri dish bioassay 7 days after treatment (DAT), the VA and the C populations were 27 and 31 times more resistant to glyphosate than the susceptible populations, L. multiflorum (SM) and L. rigidum (SR), respectively. On a whole-plant bioassay (21 DAT), the VA and the C populations were 6 and 11 times more resistant to glyphosate than their respective susceptible populations. The susceptible populations accumulated 2.5 and 1.4-fold more shikimic acid 48 hours after treatment (HAT), than the resistant VA and C. Glyphosate gradually inhibited net photosynthesis in all populations but at 48-72 HAT the resistant plants recovered, whereas no recovery was detected in susceptible populations. All assays were capable of detecting the resistant populations and this may be useful for farmers and consultants as an effective tool to reduce the spread of the resistant populations through quicker implementation of alternative weed management practices. However, they differed in time, costs and equipments necessaries for successfully carrying on the tests. Regarding costs, the cheapest ones were Petri dish and whole-plant bioassays, but they are time-consuming methods as the major constraints are the collection of seeds from the field and at least some weeks to evaluate the resistance. The shikimic acid and net photosynthesis assays were the quickest ones but they demand sophisticated equipments which could restrict its use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sourgrass is a perennial weed infesting annual and perennial crops in Brazil. Three biotypes (R1, R2, and R3) of sourgrass suspected to be glyphosate-resistant (R) and another one (S) from a natural area without glyphosate application, in Brazil, were tested for resistance to glyphosate based on screening, dose-response, and shikimic acid assays. Both screening and dose-response assays confirmed glyphosate resistance in the three sourgrass biotypes. Dose-response assay indicated a resistance factor of 2.3 for biotype RI and 3.9 for biotypes R2 and R3. The hypothesis of a glyphosate resistance was corroborated on the basis of shikimic acid accumulation, where the S biotype accumulated 3.3, 5.0, and 5.7 times more shikimic acid than biotypes R1, R2, and R3, respectively, 168 h after treatment with 157.50 g ae ha(-1) of glyphosate. There were no differences in contact angle of spray droplets on leaves and spray retention, indicating that differential capture of herbicide by leaves was not responsible for resistance in these biotypes. The results confirmed resistance of sourgrass to glyphosate in Brazil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calophyllum brasiliense and Mammea americana (Clusiaceae) are two trees from the tropical rain forests of the American continent. A previous screening showed high trypanocidal activity in the extracts of these species. Several mammea-type coumarins, triterpenoids and biflavonoids were isolated from the leaves of C. brasiliense. Mammea A/AA was obtained from the fruit peels of M. americana. These compounds were tested in vitro against epimastigotes and trypomastigotes of Trypanosoma cruzi, the etiologic agent of Chagas disease. The most potent compounds were mammea A/BA, A/BB, A/AA, A/BD and B/BA, with MC100 values in the range of 15 to 90 g/ml. Coumarins with a cyclized ,-dimethylallyl substituent on C-6, such as mammea B/BA, cyclo F + B/BB cyclo F, and isomammeigin, showed MC100 values > 200 g/ml. Several active coumarins were also tested against normal human lymphocytes in vitro, which showed that mammea A/AA and A/BA were not toxic. Other compounds from C. brasiliense, such as the triterpenoids, friedelin, canophyllol, the biflavonoid amentoflavone, and protocatechuic and shikimic acids, were inactive against the epimastigotes. The isopropylidenedioxy derivative of shikimic acid was inactive, and its structure was confirmed by X-ray diffraction. Our results suggest that mammea-type coumarins could be a valuable source of trypanocidal compounds.