10 resultados para sharpshooter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distribuição espacial das espécies de cigarrinhas (Dilobopterus costalimai Young, Acrogonia sp. e Oncometopia facialis Signoret), vetoras da Xylella fastidiosa, agente causal da Clorose Variegada dos Citros, foi estudada com o uso da geoestatística. As avaliações foram feitas em um pomar comercial de laranja 'Pêra' (Citrus sinensis [L.] Osb.), objetivando estabelecer meios para melhor controle dos vetores e da doença. O monitoramento da ocorrência das cigarrinhas no pomar foi feito através de amostragens mensais, utilizando-se armadilhas adesivas amarelas de 3 x 5, distribuídas uniformemente em 50 pontos na área, dispostas em laranjeiras à altura de 1,5 m do solo e substituídas mensalmente. Acrogonia sp. foi a espécie prevalente nas amostragens. Os resultados possibilitaram ajustar modelos aos semivariogramas da distribuição espacial das três espécies no pomar estudado. Durante os três anos consecutivos de amostragem, as populações de Acrogonia sp., D. costalimai e O. facialis apresentaram modelos de distribuição agregada somente nos meses de verão, inverno e primavera, respectivamente, mostrando a necessidade de monitoramento constante desses vetores para reduzir a sua população em épocas favoráveis ao seu desenvolvimento. Através de parâmetros geoestatísticos foi possível calcular a área de agregação das cigarrinhas no pomar. A espécie Acrogonia sp. apresentou área média de agregação de 15.760 m², enquanto para O. facialis e D. costalimai foi possível constatar áreas médias de agregação de 11.555 m² e 10.980 m², respectivamente. Esses resultados indicaram que para um levantamento seguro de cigarrinhas é necessário pelo menos dispor de uma armadilha por hectare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Detection of Xylella fastidiosa in citrus plants and insect vectors.Methods and Results: Chelex 100 resin matrix was successfully standardized allowing a fast DNA extraction of X. fastidiosa. An amplicon of 500 bp was observed in samples of citrus leaf and citrus xylem extract, with and without symptoms of citrus variegated chlorosis, using PCR with a specific primer set indicating the presence of X. fastidiosa. The addition of insoluble acid-washed polyvinylpyrrolidone (PVPP) prior to DNA extraction of insect samples using Chelex 100 resin together with nested-PCR permitted the detection of X. fastidiosa within sharpshooter heads with great sensitivity. It was possible to detect up to two bacteria per reaction. From 250 sharpshooter samples comprising four species (Dilobopterus costalimai, Oncometopia facialis, Bucephalogonia xanthopis and Acrogonia sp.), 87 individuals showed positive results for X. fastidiosa in a nested-PCR assay.Conclusions: the use of Chelex 100 resin allowed a fast and efficient DNA extraction to be used in the detection of X. fastidiosa in citrus plants and insect vectors by PCR and nested-PCR assays, respectively.Significance and Impact of the study: the employment of efficient and sensitive methods to detect X. fastidiosa in citrus plants and insect vectors will greatly assist epidemiological studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knockdown and toxic effects of insecticides of different chemical groups and modes of action registered for citrus in Brazil were investigated for effective control of Bucephalogonia xanthophis, a sharpshooter vector of Xylella fastidiosa in citrus. The active ingredients dimethoate (1.2 mL/1.2L), imidacloprid (0.24 mL/1.2L) and lambda-cyhalothrin (0.24 mL/1.2L), as well as a control (water), were sprayed onto branches of potted-citrus nursery trees to evaluate the effect of residual contact. The insects were confined on sprayed branches by using sleeve cages, in groups of 10 per branch (5 branches/treatment). Lambdacyhalothrin showed a knockdown effect on B. xanthophis (>70% mortality within 2 h of exposure), and the residues were effective for approximately one wk. Imidacloprid, lambdacyhalothrin and dimethoate suppressed the vector populations for up to 3 wk after application, when the insects were exposed to sprayed plants for at least 24 h. In another experiment, 2 neonicotinoid insecticides (thiamethoxam and imidacloprid) were applied by soil drench to potted nursery trees, in order to study their systemic effect, i.e., mortality by ingestion on sharpshooter adults. Thiamethoxam and imidacloprid effectively controlled the vectors at all concentrations tested, when the insects were exposed to treated plants for 24 h (>80% mortality) or 48 h (near 100% mortality). The knockdown effect of thiamethoxam and lambda-cyhalothrin might be particularly important to prevent vector transmission of X. fastidiosa in citrus groves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS) are two economically important diseases in Brazil caused by the bacterium Xylella fastidiosa. Strains of the bacterium isolated from the two plant hosts are very closely related, and the two diseases share sharpshooter insect vectors. In order to determine if citrus strains of X. fastidiosa could infect coffee and induce CLS disease, plant inoculations were performed. Plants of coffee, Coffea arabica 'Mundo Novo', grafted on Coffea canephora var, robusta 'Apuatao 2258' were mechanically inoculated with triply cloned strains of X. fastidiosa isolated from diseased coffee and citrus. Three months postinoculation, 5 of the 10 plants inoculated with CLS-X. fastidiosa and 1 of the 10 plants inoculated with CVC-X. fastidiosa gave positive enzyme-linked immunosorbent assay (ELISA) and/or polymerase chain reaction (PCR). Eight months postinoculation, another six plants inoculated with CVC-X. fastidiosa gave positive PCR results. The two X. fastidiosa strains were isolated from the inoculated plants and showed the same characteristics as the original clones by microscopy, ELISA, and PCR. None of the plants inoculated with sterile periwinkle wilt (PW) medium as controls gave positive reactions in diagnostic tests, and none developed disease symptoms. Six months postinoculation, seven plants inoculated with CLS-X. fastidiosn and eight inoculated with CVC-X. fastidiosa began to develop characteristic CLS symptoms, including apical and marginal leaf scorch, defoliation, and reductions of internode length, leaf size, and plant height, terminal clusters of small chlorotic and deformed leaves, and lateral shoot dieback. We have demonstrated that X, fastidiosa from citrus plants is pathogenic for coffee plants. This has important consequences for the management of CLS disease and has implications for the origin of citrus variegated chlorosis disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylella fastidiosa causes citrus variegated chlorosis (CVC) disease in Brazil and Pierce's disease of grapevines in the United States. Both of these diseases cause significant production problems in the respective industries. The recent establishment of the glassy-winged sharpshooter in California has radically increased the threat posed by Pierces disease to California viticulture. Populations of this insect reach very high levels in citrus groves in California and move from the orchards into the vineyards, where they acquire inoculum and spread Pierce's disease in the vineyards. Here we show that strains of X. fastidiosa isolated from diseased citrus and coffee in Brazil can incite symptoms of Pierce's disease after mechanical inoculation into seven commercial Vitis vinifera varieties grown in Brazil and California. Thus, any future introduction of the CVC strains of X. fastidiosa into the United States would pose a threat to both the sweet orange and grapevine industries. Previous work has clearly shown that the strains of X. fastidiosa isolated from Pierce's disease- and CVC-affected plants are the most distantly related of all strains in the diverse taxon X. fastidiosa. The ability of citrus strains of X. fastidiosa to incite disease in grapevine is therefore surprising and creates an experimental system with which to dissect mechanisms used by X.,fastidiosa in plant colonization and disease development using the full genome sequence data that has recently become available for both the citrus and grapevine strains of this pathogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xylella fastidiosa, a xylem-limited bacterium, causes several economically important diseases in North, Central, and South America. These diseases are transmitted by sharpshooter insects, contaminated budwood, and natural root-grafts. X. fastidiosa extensively colonizes the xylem vessels of susceptible plants. Citrus fruit have a well-developed vascular system, which is continuous with the vascular system of the plant. Citrus seeds develop very prominent vascular bundles, which are attached through ovular and seed bundles to the xylem system of the fruit. Sweet orange (Citrus sinensis) fruit of cvs. Pera, Natal, and Valencia with characteristic symptoms of citrus variegated chlorosis disease were collected for analysis. X. fastidiosa was detected by polymerase chain reaction (PCR) in all main fruit vascular bundles, as well as in the seed and in dissected seed parts. No visual abnormalities were observed in seeds infected with the bacterium. However, the embryos of the infected seeds weighed 25% less than those of healthy seeds, and their germination rate was lower than uninfected seeds. There were about 2,500 cells of X. fastidiosa per infected seed of sweet orange, as quantified using real-time PCR techniques. The identification of X. fastidiosa in the infected seeds was confirmed by cloning and sequencing the specific amplification product, obtained by standard PCR with specific primers. X. fastidiosa was also detected in and recovered from seedlings by isolation in vitro. Our results show that X. fastidiosa can infect and colonize fruit tissues including the seed. We also have shown that X. fastidiosa can be transmitted from seeds to seedlings of sweet orange. To our knowledge, this is the first report of the presence of X. fastidiosa in seeds and its transmission to seedlings.