979 resultados para shared virtual spaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a framework for visual and haptic collaboration in X3D/VRML shared virtual spaces. In this collaborative framework, two pipelines— visual and haptic—complement each other to provide a simple and efficient solution to problem requiring collaboration in shared virtual spaces on the web. We consider shared objects defined as virtual object with their visual and physical properties rendered synchronously on each client computer. We introduce virtual tools which are shared objects associated with interactive and haptic devices. We implemented the proposed ideas as a server-client framework with a dedicated viewer. We discuss two implementation frameworks based on the strong and thin server concepts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a framework for visual and haptic collaboration in 3D shared virtual spaces. Virtual objects can de declared as shared objects which visual and physical properties are rendered synchronously on each client computer. We introduce virtual tools which are shared objects associated with interactive and haptic devices. We implement the proposed ideas as new pilot versions of BS Collaborate server and BS Contact VRML/X3D viewer. In our collaborative framework, two pipelines-visual and haptic-complement each other to provide a simple and efficient solution to problem requiring collaboration in shared virtual spaces on the Web. We discuss two implementation frameworks based on the strong and thin server concepts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen tomado de la publicación

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual Reality is a relatively new technology in the relatively young field of computer science. The design of Virtual Reality has only recently come into discussion, as well as the implications for this sort of design. I hope to determine how a user can work most efficiently and accurately in a Virtual World. By studying this, I hope to help in the standardization of Virtual Reality design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article explores the possibilities of formalizing and explaining the mechanisms that support spatial and social perspective alignment sustained over the duration of a social interaction. The basic proposed principle is that in social contexts the mechanisms for sensorimotor transformations and multisensory integration (learn to) incorporate information relative to the other actor(s), similar to the "re-calibration" of visual receptive fields in response to repeated tool use. This process aligns or merges the co-actors' spatial representations and creates a "Shared Action Space" (SAS) supporting key computations of social interactions and joint actions; for example, the remapping between the coordinate systems and frames of reference of the co-actors, including perspective taking, the sensorimotor transformations required for lifting jointly an object, and the predictions of the sensory effects of such joint action. The social re-calibration is proposed to be based on common basis function maps (BFMs) and could constitute an optimal solution to sensorimotor transformation and multisensory integration in joint action or more in general social interaction contexts. However, certain situations such as discrepant postural and viewpoint alignment and associated differences in perspectives between the co-actors could constrain the process quite differently. We discuss how alignment is achieved in the first place, and how it is maintained over time, providing a taxonomy of various forms and mechanisms of space alignment and overlap based, for instance, on automaticity vs. control of the transformations between the two agents. Finally, we discuss the link between low-level mechanisms for the sharing of space and high-level mechanisms for the sharing of cognitive representations. © 2013 Pezzulo, Iodice, Ferraina and Kessler.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polygon and point based models dominate virtual reality. These models also affect haptic rendering algorithms, which are often based on collision with polygons. With application to dual point haptic devices for operations like grasping, complex polygon and point based models will make the collision detection procedure slow. This results in the system not able to achieve interactivity for force rendering. To solve this issue, we use mathematical functions to define and implement geometry (curves, surfaces and solid objects), visual appearance (3D colours and geometric textures) and various tangible physical properties (elasticity, friction, viscosity, and force fields). The function definitions are given as analytical formulas (explicit, implicit and parametric), function scripts and procedures. We proposed an algorithm for haptic rendering of virtual scenes including mutually penetrating objects with different sizes and arbitrary location of the observer without a prior knowledge of the scene to be rendered. The algorithm is based on casting multiple haptic rendering rays from the Haptic Interaction Point (HIP), and it builds a stack to keep track on all colliding objects with the HIP. The algorithm uses collision detection based on implicit function representation of the object surfaces. The proposed approach allows us to be flexible when choosing the actual rendering platform, while it can also be easily adopted for dual point haptic collision detection as well as force and torque rendering. The function-defined objects and parts constituting them can be used together with other common definitions of virtual objects such as polygon meshes, point sets, voxel volumes, etc. We implemented an extension of X3D and VRML as well as several standalone application examples to validate the proposed methodology. Experiments show that our concern about fast, accurate rendering as well as compact representation could be fulfilled in various application scenarios and on both single and dual point haptic devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Technology is continually changing, and evolving, throughout the entire construction industry; and particularly in the design process. One of the principal manifestations of this is a move away from team working in a shared work space to team working in a virtual space, using increasingly sophisticated electronic media. Due to the significant operating differences when working in shared and virtual spaces adjustments to generic skills utilised by members is a necessity when moving between the two conditions. This paper reports an aspect of a CRC-CI research project based on research of ‘generic skills’ used by individuals and teams when engaging with high bandwidth information and communication technologies (ICT). It aligns with the project’s other two aspects of collaboration in virtual environments: ‘processes’ and ‘models’. The entire project focuses on the early stages of a project (i.e. design) in which models for the project are being developed and revised. The paper summarises the first stage of the research project which reviews literature to identify factors of virtual teaming which may affect team member skills. It concludes that design team participants require ‘appropriate skills’ to function efficiently and effectively, and that the introduction of high band-width technologies reinforces the need for skills mapping and measurement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

3D Virtual Environments (VE) are real; they exist as digital worlds with the advantage of having none of the constraints of the real world. As such they are the perfect training ground for design students who can create, build and experiment with design solutions without the constraint of real world projects. This paper reports on an educational setting used to explore a model for using VE such as Second Life (SL) developed by Linden Labs in California, as a collaborative environment for design education. A postgraduate landscape architecture learning environment within a collaborative design unit was developed to integrate this model where the primary focus was the application of three-dimensional tools within design, not as a presentation tool, but rather as a design tool. The focus of the unit and its aims and objectives will be outlined before describing the use of SL in the unit. Attention is focused on the collaboration and learning experience before discussing the outcomes, student feedback, future projects using this model and potential for further research. The outcome of this study aims to contribute to current research on teaching and learning design in interactive VE’s. We present a case study of our first application of this model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Though stadium style seating in large lecture theatres may suggest otherwise, effective teaching and learning is a not a spectator sport. A challenge in creating effective learning environments in both physical and virtual spaces is to provide optimal opportunity for student engagement in active learning. Queensland University of Technology (QUT) has developed the Open Web Lecture (OWL), a new web-based student response application, which seamlessly integrates a virtual learning environment within the physical learning space. The result is a blended learning experience; a fluid collaboration between academic and students connected to OWL via the University’s Wi-Fi using their own laptop or mobile web device. QUT is currently piloting the OWL application to encourage student engagement. OWL offers opportunities for participants to: • Post comments and questions • Reply to comments
 • "Like" comments
 • Poll students and review data • Review archived sessions. Many of these features instinctively appeal to student users of social networking media, yet avail the academic of control within the University network. Student privacy is respected through a system of preserving peer-peer anonymity, a functionality that seeks to address a traditional reluctance to speak up in large classes. The pilot is establishing OWL as an opportunity for engaging students in active learning opportunities by enabling • virtual learning in physical spaces for large group lectures, seminar groups, workshops and conferences • live collaborative technology connecting students and the academic via the wireless network using their own laptop or mobile device • an non- intimidating environment in which to ask questions • promotion of a sense of community • instant feedback • problem based learning. The student and academic response to OWL has been overwhelmingly positive, crediting OWL as an easy to use application, which creates effective learning opportunities though interactivity and immediate feedback. This poster and accompanying online presentation of the technology will demonstrate how OWL offers new possibilities for active learning in physical spaces by: • providing increased opportunity for student engagement • supporting a range of learners and learning activities • fostering blended learning experiences. The presentation will feature visual displays of the technology, its various interfaces and feedback including clips from interviews with students and academics participating in the early stages of the pilot.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study explores the relationship between open space design, factors impacting open space provision, and resident satisfaction with open space in multistorey apartment buildings in the context of the subtropical lifestyle and climate of Brisbane Australia. The purpose of the paper is to identify the specific physical and spatial design characteristics residents perceive to be important in open spaces associated with their private dwellings and with shared open spaces. Firsthand resident evaluations of everyday experiences of residing in inner urban high density environments are explored through a survey of 636 residents and interviews with 24 residents. Private balconies are highly valued, but residents’ satisfaction would be enhanced by spaciousness for diverse activities, privacy and climate responsive design. Communal spaces and facilities are used infrequently by many residents who prefer interactions with community outside of the building. This is related to preferences for a level of anonymity in a setting where privacy is difficult to achieve due to physical proximity of neighbours.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper focuses on an efficient user-level method for the deployment of application-specific extensions, using commodity operating systems and hardware. A sandboxing technique is described that supports multiple extensions within a shared virtual address space. Applications can register sandboxed code with the system, so that it may be executed in the context of any process. Such code may be used to implement generic routines and handlers for a class of applications, or system service extensions that complement the functionality of the core kernel. Using our approach, application-specific extensions can be written like conventional user-level code, utilizing libraries and system calls, with the advantage that they may be executed without the traditional costs of scheduling and context-switching between process-level protection domains. No special hardware support such as segmentation or tagged translation look-aside buffers (TLBs) is required. Instead, our ``user-level sandboxing'' mechanism requires only paged-based virtual memory support, given that sandboxed extensions are either written by a trusted source or are guaranteed to be memory-safe (e.g., using type-safe languages). Using a fast method of upcalls, we show how our mechanism provides significant performance improvements over traditional methods of invoking user-level services. As an application of our approach, we have implemented a user-level network subsystem that avoids data copying via the kernel and, in many cases, yields far greater network throughput than kernel-level approaches.