754 resultados para shape discrimination
Resumo:
The ability to recognize a shape is linked to figure-ground (FG) organization. Cell preferences appear to be correlated across contrast-polarity reversals and mirror reversals of polygon displays, but not so much across FG reversals. Here we present a network structure which explains both shape-coding by simulated IT cells and suppression of responses to FG reversed stimuli. In our model FG segregation is achieved before shape discrimination, which is itself evidenced by the difference in spiking onsets of a pair of output cells. The studied example also includes feature extraction and illustrates a classification of binary images depending on the dominance of vertical or horizontal borders.
Resumo:
There is evidence that automatic visual attention favors the right side. This study investigated whether this lateral asymmetry interacts with the right hemisphere dominance for visual location processing and left hemisphere dominance for visual shape processing. Volunteers were tested in a location discrimination task and a shape discrimination task. The target stimuli (S2) could occur in the left or right hemifield. They were preceded by an ipsilateral, contralateral or bilateral prime stimulus (S1). The attentional effect produced by the right S1 was larger than that produced by the left S1. This lateral asymmetry was similar between the two tasks suggesting that the hemispheric asymmetries of visual mechanisms do not contribute to it. The finding that it was basically due to a longer reaction time to the left S2 than to the right S2 for the contralateral S1 condition suggests that the inhibitory component of attention is laterally asymmetric.
Resumo:
A simple and inexpensive method is described for analysis of uranium (U) activity and mass in water by liquid scintillation counting using $\alpha$/$\beta$ discrimination. This method appears to offer a solution to the need for an inexpensive protocol for monitoring U activity and mass simultaneously and an alternative to the potential inaccuracy involved when depending on the mass-to-activity conversion factor or activity screen.^ U is extracted virtually quantitatively into 20 ml extractive scintillator from a 1-$\ell$ aliquot of water acidified to less than pH 2. After phase separation, the sample is counted for a 20-minute screening count with a minimum detection level of 0.27 pCi $\ell\sp{-1}$. $\alpha$-particle emissions from the extracted U are counted with close to 100% efficiency with a Beckman LS6000 LL liquid scintillation counter equipped with pulse-shape discrimination electronics. Samples with activities higher than 10 pCi $\ell\sp-1$ are recounted for 500-1000 minutes for isotopic analysis. Isotopic analysis uses events that are automatically stored in spectral files and transferred to a computer during assay. The data can be transferred to a commercially available spreadsheet and retrieved for examination or data manipulation. Values for three readily observable spectral features can be rapidly identified by data examination and substituted into a simple formula to obtain $\sp{234}$U/$\sp{238}$U ratio for most samples. U mass is calculated by substituting the isotopic ratio value into a simple equation.^ The utility of this method for the proposed compliance monitoring of U in public drinking water supplies was field tested with a survey of drinking water from Texas supplies that had previously been known to contain elevated levels of gross $\alpha$ activity. U concentrations in 32 samples from 27 drinking water supplies ranged from 0.26 to 65.5 pCi $\ell\sp{-1}$, with seven samples exceeding the proposed Maximum Contaminant Level of 20 $\mu$g $\ell\sp{-1}$. Four exceeded the proposed activity screening level of 30 pCi $\ell\sp{-1}$. Isotopic ratios ranged from 0.87 to 41.8, while one sample contained $\sp{234}$U activity of 34.6 pCi $\ell\sp{-1}$ in the complete absence of its parent, $\sp{238}$U. U mass in the samples with elevated activity ranged from 0.0 to 103 $\mu$g $\ell\sp{-1}$. A limited test of screening surface and groundwaters for contamination by U from waste sites and natural processes was also successful. ^
Resumo:
The hadrontherapy exploits beams of charged particles against deep cancers. These ions have a depth-dose profile in which there is a little release of energy at the beginning of their path, whereas there is a sharp maximum, the Bragg Peak, near its end path. However, if heavy ions are used, the fragmentation of the projectile can happen and the fragments can release some dose outside the treatment volume beyond the Bragg peak. The fragmentation process takes place also when the Galactic Cosmic Rays at high energy hit the spaceship during space missions. In both cases some neutrons can be produced and if they interact with the absorbing materials nuclei some secondary particles are generated which can release energy. For this reason, studies about the cross section measurements of the fragments generated during the collisions of heavy ions against the tissues nuclei are very important. In this context, the FragmentatiOn Of Target (FOOT) experiment was born, and aims at measuring the differential and double differential fragmentation cross sections for different kinetic energies relevant to hadrontherapy and space radioprotection with high accuracy. Since during fragmentation processes also neutrons are produced, tests of a neutron detection system are ongoing. In particular, recently a neutron detector made up of a liquid organic scintillator, BC-501A with neutrons/gammas discrimination capability was studied, and it represents the core of this thesis. More in details, an analysis of the data collected at the GSI laboratory, in Darmstadt, Germany, is effectuated which consists in discriminating neutral and charged particles and then to separate neutrons from gammas. From this analysis, a preliminary energy-differential reaction cross-section for the production of neutrons in the 16O + (C_2H_4)_(n) and 16O + C reactions was estimated.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key component for the top-down control of perception. However, measuring this activity and its influence requires precise extraction of frequency components. This processing is not straightforward. Particularly, difficulties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents a novel method using adaptive filters for tracking and extracting these time-varying oscillations. This scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then capable of tracking an oscillation and describing its temporal evolution even during low amplitude time segments. Moreover, this method can be extended in order to track several oscillations simultaneously and to use multiple signals. These two extensions are particularly relevant in the framework of EEG data processing, where oscillations are active at the same time in different frequency bands and signals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape discrimination experiment for assessing its usefulness during EEG processing and in detecting functionally relevant changes. This method is an interesting additional processing step for providing alternative information compared to classical time-frequency analyses and for improving the detection and analysis of cross-frequency couplings.
Resumo:
Evidence exists that both right and left hemisphere attentional mechanisms are mobilized when attention is directed to the right visual hemifield and only right hemisphere attentional mechanisms are mobilized when attention is directed to the left visual hemifield. This arrangement might lead to a rightward bias of automatic attention. The hypothesis was investigated by testing male volunteers, wherein a ""location discrimination"" reaction time task (Experiments 1 and 3) and a ""location and shape discrimination"" reaction time task (Experiments 2 and 4) were used. Unilateral (Experiments 1 and 2) and unilateral or bilateral (Experiments 3 and 4) peripheral visual prime stimuli were used to control attention. Reaction time to a small visual target stimulus in the same location or in the horizontally opposite location was evaluated. Stimulus onset asynchronies (SOAs) were 34, 50, 67, 83 and 100 ms. An important prime stimulus attentional effect was observed as early as 50 ms in the four experiments. In Experiments 2, 3 and 4, this effect was larger when the prime stimulus occurred in the right hemifield than when it occurred in the left hemifield for SOA 100 ms. In Experiment 4, when the prime stimulus occurred simultaneously in both hemifields, reaction time was faster for the right hemifield and for SOA 100 ms. These results indicate that automatic attention tends to favor the right side of space, particularly when identification of the target stimulus shape is required. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Die vorliegende Arbeit beschäftigt sich vorwiegend mit Detektionsproblemen, die bei Experimenten zur Chemie der Transactiniden mit dem schnellen Flüssig-Flüssig-Extraktionssystem SISAK auftraten. Bei diesen Experimenten wird als Detektionsmethode die Flüssigszintillationsspektroskopie (LSC) eingesetzt. Es werden Szintillationspulse registriert, die für das verursachende Teilchen charakteristische Formen zeigen, die unterschieden werden müssen. Am Beispiel der Auswertung des SISAK-Experimentes zur Chemie des Rutherfordiums vom November 1998 wurde gezeigt, dass es mit den herkömmlichen Verfahren zur Pulsformdiskriminierung nicht möglich ist, die aus dem Zerfall der Transactiniden stammenden alpha-Ereignisse herauszufiltern. Ursache dafür ist ein hoher Untergrund, der in erster Linie von beta/gamma-Teilchen, Spaltfragmenten und pile ups verursacht wird. Durch die Verfügbarkeit von Transientenrecordern ergeben sich neue Möglichkeiten für eine digitale Pulsformdiskriminierung. In dieser Arbeit wird erstmals die Methode der digitalen Pulsformdiskriminierung mit künstlichen neuronalen Netzen (PSD-NN) vorgestellt. Es wurde im Zuge der Auswertung des SISAK-Experimentes vom Februar 2000 gezeigt, dass neuronale Netze in der Lage sind, Pulsformen automatisch richtig zu klassifizieren. Es ergeben sich nahezu untergrundfreie alpha-Flüssigszintillationsspektren. Es werden Vor- und Nachteile der neuen Methode diskutiert. Es ist dadurch möglich geworden, in SISAK-Experimenten Transactinidenatome anhand ihres Zerfalls eindeutig zu charakterisieren. Das SISAK-System kann somit bei Experimenten zum Studium des chemischen Verhaltens von Transactiniden in flüssiger Phase eingesetzt werden.____
Resumo:
BACKGROUND: Higher visual functions can be defined as cognitive processes responsible for object recognition, color and shape perception, and motion detection. People with impaired higher visual functions after unilateral brain lesion are often tested with paper pencil tests, but such tests do not assess the degree of interaction between the healthy brain hemisphere and the impaired one. Hence, visual functions are not tested separately in the contralesional and ipsilesional visual hemifields. METHODS: A new measurement setup, that involves real-time comparisons of shape and size of objects, orientation of lines, speed and direction of moving patterns, in the right or left visual hemifield, has been developed. The setup was implemented in an immersive environment like a hemisphere to take into account the effects of peripheral and central vision, and eventual visual field losses. Due to the non-flat screen of the hemisphere, a distortion algorithm was needed to adapt the projected images to the surface. Several approaches were studied and, based on a comparison between projected images and original ones, the best one was used for the implementation of the test. Fifty-seven healthy volunteers were then tested in a pilot study. A Satisfaction Questionnaire was used to assess the usability of the new measurement setup. RESULTS: The results of the distortion algorithm showed a structural similarity between the warped images and the original ones higher than 97%. The results of the pilot study showed an accuracy in comparing images in the two visual hemifields of 0.18 visual degrees and 0.19 visual degrees for size and shape discrimination, respectively, 2.56° for line orientation, 0.33 visual degrees/s for speed perception and 7.41° for recognition of motion direction. The outcome of the Satisfaction Questionnaire showed a high acceptance of the battery by the participants. CONCLUSIONS: A new method to measure higher visual functions in an immersive environment was presented. The study focused on the usability of the developed battery rather than the performance at the visual tasks. A battery of five subtasks to study the perception of size, shape, orientation, speed and motion direction was developed. The test setup is now ready to be tested in neurological patients.
Resumo:
Measurements of neutron and gamma dose rates in mixed radiation fields, and gamma dose rates from calibrated gamma sources, were performed using a liquid scintillation counter NE213 with a pulse shape discrimination technique based on the charge comparison method. A computer program was used to analyse the experimental data. The radiation field was obtained from a 241Am-9Be source. There was general agreement between measured and calculated neutron and gamma dose rates in the mixed radiation field, but some disagreement in the measurements of gamma dose rates for gamma sources, due to the dark current of the photomultiplier and the effect of the perturbation of the radiation field by the detector. An optical fibre bundle was used to couple an NE213 scintillator to a photomultiplier, in an attempt to minimise these effects. This produced an improvement in the results for gamma sources. However, the optically coupled detector system could not be used for neutron and gamma dose rate measurements in mixed radiation fields. The pulse shape discrimination system became ineffective as a consequence of the slower time response of the detector system.
Resumo:
In the present work the neutron emission spectra from a graphite cube, and from natural uranium, lithium fluoride, graphite, lead and steel slabs bombarded with 14.1 MeV neutrons were measured to test nuclear data and calculational methods for D - T fusion reactor neutronics. The neutron spectra measured were performed by an organic scintillator using a pulse shape discrimination technique based on a charge comparison method to reject the gamma rays counts. A computer programme was used to analyse the experimental data by the differentiation unfolding method. The 14.1 MeV neutron source was obtained from T(d,n)4He reaction by the bombardment of T - Ti target with a deuteron beam of energy 130 KeV. The total neutron yield was monitored by the associated particle method using a silicon surface barrier detector. The numerical calculations were performed using the one-dimensional discrete-ordinate neutron transport code ANISN with the ZZ-FEWG 1/ 31-1F cross section library. A computer programme based on Gaussian smoothing function was used to smooth the calculated data and to match the experimental data. There was general agreement between measured and calculated spectra for the range of materials studied. The ANISN calculations carried out with P3 - S8 calculations together with representation of the slab assemblies by a hollow sphere with no reflection at the internal boundary were adequate to model the experimental data and hence it appears that the cross section set is satisfactory and for the materials tested needs no modification in the range 14.1 MeV to 2 MeV. Also it would be possible to carry out a study on fusion reactor blankets, using cylindrical geometry and including a series of concentric cylindrical shells to represent the torus wall, possible neutron converter and breeder regions, and reflector and shielding regions.
Resumo:
Nel corso degli ultimi decenni sono stati eseguiti diversi esperimenti volti alla misura della lunghezza di scattering neutrone-neutrone, ma alcuni risultati si sono rivelati discordanti e ad oggi essa è ancora nota con insufficiente precisione, a causa della complessità del problema sia dal punto di vista teorico che sperimentale. Una migliore conoscenza di questa grandezza può fornire importanti informazioni sulla natura dei nucleoni e sulle loro interazioni. È stato quindi proposto un esperimento volto alla misura della lunghezza di scattering neutrone-neutrone al CERN di Ginevra, presso la facility n_TOF, sfruttando gli aggiornamenti apportati alle aree sperimentali e alla sorgente di neutroni negli ultimi anni. L'esperimento prevede di utilizzare la reazione di breakup del deuterio tramite l'impiego di un target attivo, composto da un bersaglio di stilbene deuterato (stilbene-d12) che funge anche da materiale scintillatore. Per verificare la fattibilità dell'esperimento sono stati eseguiti dei test preliminari presso la facility del National Center for Scientific Research (NCSR) Demokritos, irradiando il target attivo con neutroni e raggi γ a diverse energie e utilizzando due tipi diversi di sensori fotomoltiplicatori al silicio (SiPM) nel sistema di rivelazione. In questa tesi sono stati analizzati dei segnali provenienti da questi test, valutando la possibilità di eseguire discriminazione n/γ sfruttando la tecnica della Pulse Shape Discrimination (PSD).
Resumo:
L'adroterapia è una delle tecniche utilizzate ad oggi per trattare i tumori ed è basata sull'utilizzo di fasci di particelle cariche, come protoni e ioni carbonio, accelerati sulla zona da trattare. A differenza dei fotoni, utilizzati in radioterapia, le particelle cariche permettono un rilascio di energia più mirato, danneggiando il DNA delle cellule tumorali fino ad impedirne la duplicazione, senza intaccare i tessuti sani circostanti. Per sfruttare al meglio questa tecnica è necessario conoscere a fondo i processi di frammentazione nucleare che possono avere luogo durante il trattamento, sui quali si hanno ancora insufficienti dati sperimentali, in particolare a proposito della frammentazione del bersaglio. L'esperimento FOOT (FragmentatiOn Of Target) nasce proprio per poter misurare le sezioni d'urto differenziali dei processi di frammentazione nucleare alle tipiche energie dell'adroterapia, dai 60 MeV/u ai 400 MeV/u. Allo stato attuale l'esperimento è dotato di un apparato per la rivelazione di frammenti carichi pesanti e uno per quelli leggeri, mentre non ha un sistema di rivelazione per le particelle neutre. Si sta quindi valutando la possibilità di aggiungere rivelatori di neutroni, per esempio gli scintillatori liquidi BC-501A, i quali permettono di discriminare fotoni da neutroni grazie alla diversa forma del segnale prodotto (Pulse Shape Discrimination). Per studiare le prestazioni di questi rivelatori, essi si stanno attualmente testando alla facility n_TOF del CERN con diverse sorgenti di particelle. In questo lavoro di tesi mi sono occupata di analizzare i segnali raccolti da due BC-501A con una sorgente AmBe di raggi γ e neutroni, con schermo in piombo, e con una sorgente 88Y di soli raggi γ, evidenziando le buone capacità di questi rivelatori di identificare correttamente neutroni e fotoni.
Resumo:
In this study, the population structure of the white grunt (Haemulon plumieri) from the northern coast of the Yucatan Peninsula was determined through an otolith shape analysis based on the samples collected in three locations: Celestún (N 20°49",W 90°25"), Dzilam (N 21°23", W 88°54") and Cancún (N 21°21",W 86°52"). The otolith outline was based on the elliptic Fourier descriptors, which indicated that the H. plumieri population in the northern coast of the Yucatan Peninsula is composed of three geographically delimited units (Celestún, Dzilam, and Cancún). Significant differences were observed in mean otolith shapes among all samples (PERMANOVA; F2, 99 = 11.20, P = 0.0002), and the subsequent pairwise comparisons showed that all samples were significantly differently from each other. Samples do not belong to a unique white grunt population, and results suggest that they might represent a structured population along the northern coast of the Yucatan Peninsula