997 resultados para sexual tail dimorphism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the association between female reproductive investment, absolute size, and sexual size dimorphism in spiders to test the predictions of the fecundity-advantage hypothesis. The relationships between absolute size and sexual size dimorphism and aspects of female reproductive output are examined in comparative analyses using phylogenetically independent contrasts. We provide support for the idea that allometry for sexual dimorphism is the result of variation in female size more so than male size. Regression analyses suggest selection for increased fecundity in females. We argue that fecundity selection provides the only general explanation for the evolution of sexual size dimorphism in spiders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theory of evolution by sexual selection for sexual size dimorphism (SSD) postulates that SSD primarily reflects the adaptation of males and females to their different reproductive roles. For example, competition among males for access to females increases male body size because larger males are better able to maintain dominant status than smaller males. Larger dominant males sire most offspring while smaller subordinate males are unsuccessful, leading to skew in reproductive success. Therefore, species with male-biased SSD are predicted to have greater variance in male reproductive success than those in which both sexes are similar in size. We tested this prediction among the Pinnipedia, a mammalian group with a great variation in SSD. From a literature review, we identified genetic estimates of male reproductive success for 10 pinniped taxa (eight unique species and two subspecies of a ninth species) that range from seals with similarly sized males and females to species in which males are more than four times as large as females. We found no support for a positive relationship between variance in reproductive success and SSD among pinnipeds after excluding the elephant seals Mirounga leonina and Mirounga angustirostris, which we discuss as distinctive cases. Several explanations for these results are presented, including the revival of one of Darwin's original ideas. Darwin proposed that natural selection may explain SSD based on differences in energetic requirements between sexes and the potential for sexual niche segregation. Males may develop larger bodies to exploit resources that remain unavailable to females due to the energetic constraints imposed on female mammals by gestation and lactation. The importance of this alternative explanation remains to be tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexual size dimorphism (SSD) among adults is commonly observed in animals and is considered to be adaptive. However, the ontogenic emergence of SSD, i.e. the timing of divergence in body size between males and females, has only recently received attention. It is widely acknowledged that the ontogeny of SSD may differ between species, but it remains unclear how variable the ontogeny of SSD is within species. Kentish Plovers Charadrius alexandrinus and Snowy Plovers C. nivosus are closely related wader species that exhibit similar, moderate (c. 4%), male-biased adult SSD. To assess when SSD emerges we recorded tarsus length variation among 759 offspring in four populations of these species. Tarsus length of chicks was measured on the day of hatching and up to three times on recapture before fledging. In one population (Mexico, Snowy Plovers), males and females differed in size from the day of hatching, whereas growth rates differed between the sexes in two populations (Turkey and United Arab Emirates, both Kentish Plovers). In contrast, a fourth population (Cape Verde, Kentish Plovers) showed no significant SSD in juveniles. Our results suggest that adult SSD can emerge at different stages of development (prenatal, postnatal and post-juvenile) in different populations of the same species. We discuss the proximate mechanisms that may underlie these developmental differences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexual size dimorphism is widespread throughout seabird taxa and several drivers leading to its evolution have been hypothesised. While the Australasian Gannet (Morus serrator) has previously been considered nominally monomorphic, recent studies have documented sexual segregation in diet and foraging areas, traits often associated with size dimorphism. The present study investigated the sex differences in body mass and structural size of this species at two colonies (Pope's Eye, PE; Point Danger, PD) in northern Bass Strait, south-eastern Australia. Females were found to be 3.1% and 7.3% heavier (2.74 ± 0.03, n = 92; 2.67 ± 0.03 kg, n = 43) than males (2.66 ± 0.03, n = 92; 2.48 ± 0.03 kg, n = 43) at PE and PD, respectively. Females were also larger in wing ulna length (0.8% both colonies) but smaller in bill depth (PE: 2.2%; PD: 1.7%) than males. Despite this dimorphism, a discriminant function provided only mild accuracy in determining sex. A similar degree of dimorphism was also found within breeding pairs, however assortative mating was not apparent at either colony (R2 < 0.04). Using hydrogen isotope dilution, a body condition index was developed from morphometrics to estimate total body fat (TBF) stores, where TBF(%) = 24.43+1.94*(body mass/wing ulna length) - 0.58*tarsus length (r2 = 0.84, n = 15). This index was used to estimate body composition in all sampled individuals. There was no significant difference in TBF(%) between the sexes for any stage of breeding or in any year of the study at either colony suggesting that, despite a greater body mass, females were not in a better condition than males. While the driving mechanism for sexual dimorphism in this species is currently unknown, studies of other Sulids indicate segregation in foraging behaviour, habitat and diet may be a contributing factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Odonata, many species present sexual size dimorphism (SSD), which can be associated with male territoriality in Zygoptera. We hypothesized that in the territorial damselfly Argia reclusa, male-male competition can favor large males, and consequently, drive selection pressures to generate male-biased SSD. The study was performed at a small stream in southeastern Brazil. Males were marked, and we measured body size and assessed the quality of territories. We tested if larger territorial males (a) defended the best territories (those with more male intrusions and visiting females), (b) won more fights, and (c) mated more. Couples were collected and measured to show the occurrence of sexual size dimorphism. Results indicated that males are larger than females, and that territorial males were larger than non-territorial males. Larger territorial males won more fights and defended the best territories. There was no difference between the mating success of large territorial and small non-territorial males. Although our findings suggest that male territoriality may play a significant role on the evolution of sexual size dimorphism in A. reclusa, we suggest that other factors should also be considered to explain the evolution of SSD in damselflies, since non-territorial males are also capable of acquiring mates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Funding: The research was financially supported by the Holsworth Wildlife Research Endowment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A relatively large amount of variation occurs in the reproductive ecology of tropical snakes, and this variation is generally regarded as being a consequence of seasonality in climate and prey availability. In some groups, even closely related species may differ in their reproductive ecology; however, in others it seems to be very conservative. Here we explore whether characters related to reproduction are phylogenetically constrained in a monophyletic group of snakes, the subfamily Dipsadinae, which ranges from Mexico to southern South America. We provide original data on reproduction for Leptodeira annulata, Imantodes cenchoa, and three species of Sibynomorphus from southern, southeastern and central Brazil, and data from literature for other species and populations of dipsadines. Follicular cycles were seasonal in Atractus reticulatus, Dipsa, albifrons, Hypsiglena torquata, Leptodeira maculata, L. punctata, Sibynomorphus spp. and Sibon sanniola from areas where climate is seasonal. In contrast, extended or continuous follicular cycles were recorded in Dipsas catesbyi, D. neivai, Imantodes cenchoa, Leptodeira annulata, and Ninia maculata from areas with seasonal and aseasonal climates. Testicular cycles also varied from seasonal (in H. torquiata) to continuous (in Dipsa,5 spp., Leptodeira annulata, L. maculata, N. maculata, and Sibynomorphus spp.). Most dipsadines are small (less than 500 rum SVL), and females attain sexual maturity with similar relative body size than males. Sexual dimorphism occurred in terms of SVL and tail length in most species, and clutch size tended to be small (less than five eggs). Combat behavior occurs in Imantodes cenchoa, which did not show sexual size dimorphism. Reproductive timing, for both females and males, varied among species but in general there were no differences between the tribes of Dipsadinae in most of the reproductive characteristics, such as mean body size, relative size at sexual maturity, sexual size and tail dimorphism, duration of vitellogenesis or egg-carrying in oviducts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtained data on time of sexual maturity, dimorphism, fecundity and on the reproductive cycle of Mastigodryas boddaerti (Sentzen, 1796) through the examination of 321 preserved specimens, of which 221 were collected in the Brazilian Amazon region and 100 in the Cerrado savannas of Central Brazil. The degree of sexual size dimorphism (snout-vent length, SVL) was significantly greater in the specimens from the Cerrado in comparison with those from the Amazon. Females had a significantly larger number of ventral scales, on average, whereas males had more sub-caudal scales. However, there was no intersexual difference in tail length or head width, although the heads of the males were significantly longer, which may reflect dietary differences. Breeding females from the Amazon region contained between one and six eggs (N = 12, mean = 3.0), whereas two females from the Cerrado had four to six eggs (N = 10, mean = 5.0). No relationship was found between the SVL of the Amazonian females and the number of eggs or vitellogenic follicles they contained (Cerrado females were not analyzed here due to small sample size). Males are smaller than their female counterpart when they reach sexual maturity. Even though females from the Amazon reproduce throughout the year, females from the Cerrado breed seasonality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to identify potential factors responsible for geographically structured morphological variation within the widespread Australian frogs Limnodynastes tasmaniensis Gunther and L. peronii Dumeril & Bibron. There was support for James's rule, and both latitude and present climate explained large amounts of the variation in body size and shape (particularly in L. peronii). There was also some support for the influence of several biogeographical barriers. Finally, both species were sexually dimorphic for body size and the degree of sexual size dimorphism (SSD) varied geographically. Climate was an important explanation for SSD variation in L. peronii, while latitude was most important for L. tasmaniensis. Geographical variations in sexual selection via male-male physical competition and climate-related resources are suggested as potential explanations for SSD variation in L. peronii. (C) 2004 The Linnean Society of London.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many species have elaborate and complex coloration and patterning, which often differ between the sexes. Sexual selection may increase the size or intensity of color patches (elaboration) in one sex or drive the evolution of novel signal elements (innovation). The latter potentially increases color pattern complexity. Color pattern complexity may also be influenced by ecological factors related to predation and environment; however, very few studies have investigated the effects of both sexual and natural selection on color pattern complexity across species. We used a phylogenetic comparative approach to examine these effects in 85 species and subspecies of Australian dragon lizards (family Agamidae). We quantified color pattern complexity by adapting the Shannon–Wiener diversity index. There were clear sex differences in color pattern complexity, which were positively correlated with both sexual dichromatism and sexual size dimorphism, consistent with the idea that sexual selection plays a significant role in the evolution of color pattern complexity. By contrast, we found little evidence of a link between environmental factors and color pattern complexity on body regions exposed to predators. Our results suggest that sexual selection rather than natural selection has led to increased color pattern complexity in males.