898 resultados para sexual selection
Resumo:
The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.
Resumo:
Drosophila serrata is a member of the montium group, which contains more than 98 species and until recently was considered a subgroup within the melanogaster group. This Drosophila species is an emerging model system for evolutionary quantitative genetics and has been used in studies of species borders, clinal variation and sexual selection. Despite the importance of D. serrata as a model for evolutionary research, our poor understanding of its genome remains a significant limitation. Here, we provide a first-generation gene-based linkage map and a physical map for this species. Consistent with previous studies of other drosophilids we observed strong conservation of genes within chromosome arms homologous with D. melanogaster but major differences in within-arm synteny. These resources will be a useful complement to ongoing genome sequencing efforts and QTL mapping studies in this species
Resumo:
The native Australian fly Drosophila serrata belongs to the highly speciose montium subgroup of the melanogaster species group. It has recently emerged as an excellent model system with which to address a number of important questions, including the evolution of traits under sexual selection and traits involved in climatic adaptation along latitudinal gradients. Understanding the molecular genetic basis of such traits has been limited by a lack of genomic resources for this species. Here, we present the first expressed sequence tag (EST) collection for D. serrata that will enable the identification of genes underlying sexually-selected phenotypes and physiological responses to environmental change and may help resolve controversial phylogenetic relationships within the montium subgroup.
Resumo:
The males of many Bactrocera species (Diptera: Tephritidae) respond strongly and positively to a small number of plant-derived chemicals (=male lures). Males that have imbibed the lures commonly have a mating advantage over unfed males, but no female benefits have been demonstrated for females mating with lure-fed males. It has been hypothesized that the strong lure response is a case of runaway selection, where males receive direct benefits and females receive indirect benefits via 'sexy sons', or a case of sensory bias where females have a lower threshold response to lures. To test these hypotheses we studied the effects of lure feeding on male mating, remating and longevity; while for females that had mated with lure-fed males we recorded mating refractoriness, fecundity, egg viability and longevity. We used Bactrocera tryoni as our test animal and as lures the naturally occurring zingerone and chemically related, but synthetic chemical cuelure. Feeding on lures provided direct male benefits in greater mating success and increased multiple mating. For the first time, we recorded direct female effects: increased fecundity and reduced remating receptivity. Egg viability did not differ in females mated with lure-fed or unfed males. The life span of males and females exposed to lures was reduced. These results reveal direct, current-generation fitness benefits for both males and females, although the male benefits appear greater. We discuss that while lure response is indeed likely to be a sexual selection trait, there is no need to invoke runaway selection to explain its evolution.
Resumo:
In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms.
Resumo:
In male tephritid fruit flies of the genus Bactrocera, feeding on secondary plant compounds (sensu lato male lures = methyl eugenol, raspberry ketone and zingerone) increases male mating success. Ingested male lures alter the male pheromonal blend, normally making it more attractive to females and this is considered the primary mechanism for the enhanced mating success. However, the male lures raspberry ketone and zingerone are known, across a diverse range of other organisms, to be involved in increasing energy metabolism. If this also occurs in Bactrocera, then this may represent an additional benefit to males as courtship is metabolically expensive and lure feeding may increase a fly's short-term energy. We tested this hypothesis by performing comparative RNA-seq analysis between zingerone-fed and unfed males of Bactrocera tryoni. We also carried out behavioural assays with zingerone- and cuelure-fed males to test whether they became more active. RNA-seq analysis revealed, in zingerone-fed flies, up-regulation of 3183 genes with homologues transcripts to those known to regulate intermale aggression, pheromone synthesis, mating and accessory gland proteins, along with significant enrichment of several energy metabolic pathways and gene ontology terms. Behavioural assays show significant increases in locomotor activity, weight reduction and successful mating after mounting; all direct/indirect measures of increased activity. These results suggest that feeding on lures leads to complex physiological changes, which result in more competitive males. These results do not negate the pheromone effect, but do strongly suggest that the phytochemical-induced sexual selection is governed by both female preference and male competitive mechanisms.
Resumo:
It has been only recently realized that sexual selection does not end at copulation but that post-copulatory processes are often important in determining the fitness of individuals. In this thesis, I experimentally studied both pre- and post-copulatory sexual selection in the least killifish, Heterandria formosa. I found that this species suffers from severe inbreeding depression in male reproductive behaviour, offspring viability and offspring maturation times. Neither sex showed pre-copulatory inbreeding avoidance but when females mated with their brothers, less sperm were retrieved from their reproductive system compared to the situation when females mated with unrelated males. Whether the difference in sperm numbers is due to female or male effect could not be resolved. Based on theory, females should be more eager to avoid inbreeding than males in this species, because females invest more in their offspring than males do. Inbreeding seems to be an important part of this species biology and the severe inbreeding depression has most likely selected for the evolution of the post-copulatory inbreeding avoidance mechanism that I found. In addition, I studied the effects of polyandry on female reproductive success. When females mated with more than one male, they were more likely to get pregnant. However, I also found a cost of polyandry. The offspring of females mated to four males took longer to reach sexual maturity compared to the offspring of monandrous females. This cost may be explained by parent-offspring conflict over maternal resource allocation. In another experiment, in which within-brood relatedness was manipulated, offspring sizes decreased over time when within-brood relatedness was low. This result is partly in accordance with the kinship theory of genomic imprinting. When relatedness decreases, offspring are expected to be less co-operative and demand fewer resources from their mother, which leads to impaired development. In the last chapter of my thesis, I show that H. formosa males do not prefer large females as in other Poeciliidae species. I suggest that males view smaller females as more profitable mates because those are more likely virgin. In conclusion, I found both pre- and post-copulatory sexual selection to be important factors in determining reproductive success in H. formosa.
Resumo:
Jordens ekologiska system undergår för tillfället stora förändringar pga. människans aktiviteter. Ett växande antal studier visar att dessa förändringar påverkar naturliga och sexuella urvalet och därmed evolutiva processer. Målet med detta arbete var att undersöka effekterna av omgivningsförändringar på sexuella urvalet genom att använda den ökade övergödningen inom storpiggen Gasterosteus aculeatus lekområden som modell system. Sexuella urvalet är en viktig evolutiv kraft med följder på populations- och artnivå (Kapitel 1). Avhandlingens olika delar fokuserar på övergödningens effekter på upptäckandet av partners, användningen av visuella- och doftsignaler i partnersval, och fördelningen av parningsframgången mellan bobyggande hanar. I Kapitel II och III simuleras hur grumlighet orsakad av fytoplankton påverkar hastigheten med vilken potentiella partners påträffas, genom effekter på synligheten. Resultaten visar att normala algblomningar i Östersjön har en måttlig effekt på finnandet av potentiella partners. Detta tyder på att algblomningarna troligen inte kommer att minska på selektiva parningen pga. ökade sökkostnader. I Kapitel IV visas att storspiggen ändrar relativa användningen av olika signaler när vattnets grumlighet ökar; visuella signaler minskar i betydelse medan doftsignaler ökar i betydelse. Samtidigt underlättas användandet av doftsignaler av ändringar i vattnets kemiska sammansättning då fotosyntesen intensifieras (Kapitel V). Lek i övergödda vatten kan ändå vara kostsamt både på individ- och populationsnivån, då parasiterade hanar, som troligen är dåligt genetiskt anpassade till sin miljö, lyckas få mer ägg i sina bon än friskare hanar som troligen är av högre genetisk kvalitet (Kapitel VI). Övergödningen påverkar således partnersval och konkurrensen om partners genom att påverka upptäckandet av potentiella partners, evalueringen av partners och fördelningen av partners inom lekområdena. De följder detta kan ha för evolutionen av sexuellt selekterad egenskaper och för populationers dynamik och livskraft är dock oklara. Avhandlingen visar på svårigheten att förutse följderna av omgivningsförändringar för sexuella urvalet och effekterna på individ och populationsnivå.
Resumo:
Social and ecological factors are important in shaping sexual dimorphism in Anthropoidea, but there is also a tendency for body-size dimorphism and canine dimorphism to increase with increased body size (Rensch's rule) (Rensch: Evolution Above the Species Level. London: Methuen, 1959.) Most ecologist interpret Rensch's rule to be a consequence of social and ecological selective factors that covary with body size, but recent claims have been advanced that dimorphism is principally a consequence of selection for increased body size alone. Here we assess the effects of body size, body-size dimorphism, and social structure on canine dimorphism among platyrrhine monkeys. Platyrrhine species examined are classified into four behavioral groups reflecting the intensity of intermale competition for access to females or to limiting resources. As canine dimorphism increases, so does the level of intermale competition. Those species with monogamous and polyandrous social structures have the lowest canine dimorphism, while those with dominance rank hierarchies of males have the most canine dimorphism. Species with fission-fusion social structures and transitory intermale breeding-season competition fall between these extremes. Among platyrrhines there is a significant positive correlation between body size and canine dimorphism However, within levels of competition, no significant correlation was found between the two. Also, with increased body size, body-size dimorphism tends to increase, and this correlation holds in some cases within competition levels. In an analysis of covariance, once the level of intermale competition is controlled for, neither molar size nor molar-size dimorphism accounts for a significant part of the variance in canine dimorphism. A similar analysis using body weight as a measure of size and dimorphism yields a less clear-cut picture: body weight contributes significantly to the model when the effects of the other factors are controlled. Finally, in a model using head and body length as a measure of size and dimorphism, all factors and the interactions between them are significant. We conclude that intermale competition among platyrrhine species is the most important factor explaining variations in canine dimorphism. The significant effects of size and size dimorphism in some models may be evidence that natural (as opposed to sexual) selection also plays a role in the evolution of increased canine dimorphism.
Resumo:
This integrative review presents a novel hypothesis as a basis for integrating two evolutionary viewpoints on the origins of human cognition and communication, the sexual selection of human mental capacities, and the social brain hypothesis. This new account suggests that mind-reading social skills increased reproductive success and consequently became targets for sexual selection. The hypothesis proposes that human communication has three purposes: displaying mind-reading abilities, aligning and maintaining representational parity between individuals to enable displays, and the exchange of propositional information. Intelligence, creativity, language, and humor are mental fitness indicators that signal an individual’s quality to potential mates, rivals, and allies. Five features central to the proposed display mechanism unify these indicators, the relational combination of concepts, large conceptual knowledge networks, processing speed, contextualization, and receiver knowledge. Sufficient between-mind alignment of conceptual networks allows displays based upon within-mind conceptual mappings. Creative displays communicate previously unnoticed relational connections and novel conceptual combinations demonstrating an ability to read a receiver’s mind. Displays are costly signals of mate quality with costs incurred in the developmental production of the neural apparatus required to engage in complex displays and opportunity costs incurred through time spent acquiring cultural knowledge. Displays that are fast, novel, spontaneous, contextual, topical, and relevant are hard-to-fake for lower quality individuals. Successful displays result in elevated social status and increased mating options. The review addresses literatures on costly signaling, sexual selection, mental fitness indicators, and the social brain hypothesis; drawing implications for nonverbal and verbal communication.
Resumo:
Indirect and direct models of sexual selection make different predictions regarding the quantitative genetic relationships between sexual ornaments and fitness. Indirect models predict that ornaments should have a high heritability and that strong positive genetic covariance should exist between fitness and the ornament. Direct models, on the other hand, make no such assumptions about the level of genetic variance in fitness and the ornament, and are therefore likely to be more important when environmental sources of variation are large. Here we test these predictions in a wild population of the blue tit (Parus caeruleus), a species in which plumage coloration has been shown to be under sexual selection. Using 3 years of cross-fostering data from over 250 breeding attempts, we partition the covariance between parental coloration and aspects of nestling fitness into a genetic and environmental component. Contrary to indirect models of sexual selection, but in agreement with direct models, we show that variation in coloration is only weakly heritable (h(2) < 0.11), and that two components of offspring fitness-nestling size and fledgling recruitment-are strongly dependent on parental effects, rather than genetic effects. Furthermore, there was no evidence of significant positive genetic covariation between parental colour and offspring traits. Contrary to direct benefit models, however, we find little evidence that variation in colour reliably indicates the level of parental care provided by either males or females. Taken together, these results indicate that the assumptions of indirect models of sexual selection are not supported by the genetic basis of the traits reported on here.
Resumo:
The theory of evolution by sexual selection for sexual size dimorphism (SSD) postulates that SSD primarily reflects the adaptation of males and females to their different reproductive roles. For example, competition among males for access to females increases male body size because larger males are better able to maintain dominant status than smaller males. Larger dominant males sire most offspring while smaller subordinate males are unsuccessful, leading to skew in reproductive success. Therefore, species with male-biased SSD are predicted to have greater variance in male reproductive success than those in which both sexes are similar in size. We tested this prediction among the Pinnipedia, a mammalian group with a great variation in SSD. From a literature review, we identified genetic estimates of male reproductive success for 10 pinniped taxa (eight unique species and two subspecies of a ninth species) that range from seals with similarly sized males and females to species in which males are more than four times as large as females. We found no support for a positive relationship between variance in reproductive success and SSD among pinnipeds after excluding the elephant seals Mirounga leonina and Mirounga angustirostris, which we discuss as distinctive cases. Several explanations for these results are presented, including the revival of one of Darwin's original ideas. Darwin proposed that natural selection may explain SSD based on differences in energetic requirements between sexes and the potential for sexual niche segregation. Males may develop larger bodies to exploit resources that remain unavailable to females due to the energetic constraints imposed on female mammals by gestation and lactation. The importance of this alternative explanation remains to be tested.
Resumo:
Sexual selection is a crucial element to understand behavioral evolution. Teleost fish have been considered as good models for research on sexual selection in the last decades due to their variety of sexual behavior. Female fish can choose males based on body and behavioral traits, such as body size, body color, ornaments, territorial quality, nest size and courtship behavior. Choices are based upon several types of sensorial inputs, such as visual, chemical, sonorous and electrical signals. Intrasexual selection also acts on females because they can mate with a dominant individual in male-male competitions. For both approaches, there is an expectation regarding the benefits of sexual selection by means of female choice. However, in several cases females do not choose the dominant male. In this mini-review, we present and discuss both intersexual and intrasexual mechanisms of sexual selection in fish and point out that females do not always choose a male for mating.