1000 resultados para sex allocation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The populations of many species are structured such that mating is not random and occurs between members of local patches. When patches are founded by a single female and all matings occur between siblings, brothers may compete with each other for matings with their sisters. This local mate competition (LMC) selects for a female-biased sex ratio, especially in species where females have control over offspring sex, as in the parasitic Hymenoptera. Two factors are predicted to decrease the degree of female bias: (1) an increase in the number of foundress females in the patch and (2) an increase in the fraction of individuals mating after dispersal from the natal patch. Pollinating fig wasps are well known as classic examples of species where all matings occur in the local patch. We studied non-pollinating fig wasps, which are more diverse than the pollinating fig wasps and also provide natural experimental groups of species with different male morphologies that are linked to different mating structures. In this group of wasps, species with wingless males mate in the local patch (i.e. the fig fruit) while winged male species mate after dispersal. Species with both kinds of male have a mixture of local and non-local mating. Data from 44 species show that sex ratios (defined as the proportion of males) are in accordance with theoretical predictions: wingless male species < wing-dimorphic male species < winged male species. These results are also supported by a formal comparative analysis that controls for phylogeny. The foundress number is difficult to estimate directly for non-pollinating fig wasps but a robust indirect method leads to the prediction that foundress number, and hence sex ratio, should increase with the proportion of patches occupied in a crop. This result is supported strongly across 19 species with wingless males, but not across 8 species with winged males. The mean sex ratios for species with winged males are not significantly different from 0.5, and the absence of the correlation observed across species with wingless males may reflect weak selection to adjust the sex ratio in species whose population mating structure tends not to be subdivided. The same relationship is also predicted to occur within species if individual females adjust their sex ratios facultatively. This final prediction was not supported by data from a wingless male species, a male wing-dimorphic species or a winged male species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The host choice and sex allocation decisions of a foraging female parasitoid will have an enormous influence on the life-history characteristics of her offspring. The pteromalid Pachycrepoideus vindemiae is a generalist idiobiont pupal parasitoid of many species of cyclorrhaphous Diptera. Wasps reared in Musca domestica were larger, had higher attack rates and greater male mating success than those reared in Drosophila melanogaster. In no-choice situations, naive female R vindemiae took significantly less time to accept hosts conspecific with their natal host. Parasitoids that emerged from M. domestica pupae spent similar amounts of time ovipositing in both D. melanogaster and M. domestica. Those parasitoids that had emerged from D. melanogaster spent significantly longer attacking M. domestica pupae. The host choice behaviour of female P. vindemiae was influenced by an interaction between natal host and experience. Female R vindemiae reared in M. domestica only showed a preference among hosts when allowed to gain experience attacking M. domestica, preferentially attacking that species. Similarly, female parasitoids reared on D. melanogaster only showed a preference among hosts when allowed to gain experience attacking D. melanogaster, again preferentially attacking that species. Wasp natal host also influenced sex allocation behaviour. While wasps from both hosts oviposited more females in the larger host, M. domestica, wasps that emerged from M. domestica had significantly more male-biased offspring sex ratios. These results indicate the importance of learning and natal host size in determining R vindemiae attack rates. mating success, host preference and sex allocation behaviour, all critical components of parasitoid fitness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sexual system of the symbiotic shrimp Thor amboinensis is described, along with observations on sex ratio and host-use pattern of different populations. We used a comprehensive approach to elucidate the previously unknown sexual system of this shrimp. Dissections, scanning electron microscopy, size-frequency distribution analysis, and laboratory observations demonstrated that T amboinensis is a protandric hermaphrodite: shrimp first mature as males and change into females later in life. Thor amboinensis inhabited the large and structurally heterogeneous sea anemone Stichoclactyla helianthus in large groups (up to 11 individuals) more frequently than expected by chance alone. Groups exhibited no particularly complex social structure and showed male-biased sex ratios more frequently than expected by chance alone. The adult sex ratio was male-biased in the four separate populations studied, one of them being thousands of kilometers apart from the others. This study supports predictions central to theories of resource monopolization and sex allocation. Dissections demonstrated that unusually large males were parasitized by an undescribed species of isopod (family Entoniscidae). Infestation rates were similarly low in both sexes (approximate to 11%-12%). The available information suggests that T. amboinensis uses pure search promiscuity as a mating system. This hypothesis needs to be formally tested with mating behavior observations and field measurements on the movement pattern of both sexes of the species. Further detailed studies on the lifestyle and sexual system of all the species within this genus and the development of a molecular phylogeny are necessary to elucidate the evolutionary history of gender expression in the genus Thor.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Logistic regression analysis was used to analyse sex allocation in a population of the leaf-cutting ant Acromyrmex balzani occurring in a pasture in southern Brazil. The field sample consisted of 151 fungus-garden chambers (18 queenright and 133 queenless), belonging to 50 nests with three vertically stacked chambers per nest on average. Taking nest chamber as the unit of analysis, seven predictor variables were considered: sampling date, chamber depth, chamber volume, weight of fungus garden, presence of a queen, number of large workers, and number of small to medium workers. The population-level numerical proportion of females was 0.548 and the inferred proportional energetic investment in females 0.672. The former was not significantly different from 0.5 (P=0.168), but the latter was (P=0.0003). The proportional investment in females per fungus garden increased with the number of large workers present (P=0.0002) and decreased with the dry weight of the fungus garden (P=0.012). This implies that resource acquisition through foraging is likely to be a major proximate determinant of sex allocation. The negative correlation between female bias and fungus garden weight might be due to developing adult females requiring more food than males, but this hypothesis could not be confirmed by direct statistical evidence.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigated sex allocation in a Mediterranean population of the facultatively polygynous (multiple queen per colony) ant Pheidole pallidula. This species shows a strong split sex ratio, with most colonies producing almost exclusively a single-sex brood. Our genetic (microsatellite) analyses reveal that P. pallidula has an unusual breeding system, with colonies being headed by a single or a few unrelated queens. As expected in such a breeding system, our results show no variation in relatedness asymmetry between monogynous (single queen per colony) and polygynous colonies. Nevertheless, sex allocation was tightly associated with the breeding structure, with monogynous colonies producing a male-biased brood and polygynous colonies almost only females. In addition, sex allocation was closely correlated with colony total sexual productivity. Overall, our data show that when colonies become more productive (and presumably larger) they shift from monogyny to polygyny and from male production to female production, a pattern that has never been reported in social insects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Olfactory cues play an integral, albeit underappreciated, role in mediating vertebrate social and reproductive behaviour. These cues fluctuate with the signaller's hormonal condition, coincident with and informative about relevant aspects of its reproductive state, such as pubertal onset, change in season and, in females, timing of ovulation. Although pregnancy dramatically alters a female's endocrine profiles, which can be further influenced by fetal sex, the relationship between gestation and olfactory cues is poorly understood. We therefore examined the effects of pregnancy and fetal sex on volatile genital secretions in the ring-tailed lemur (Lemur catta), a strepsirrhine primate possessing complex olfactory mechanisms of reproductive signalling. While pregnant, dams altered and dampened their expression of volatile chemicals, with compound richness being particularly reduced in dams bearing sons. These changes were comparable in magnitude with other, published chemical differences among lemurs that are salient to conspecifics. Such olfactory 'signatures' of pregnancy may help guide social interactions, potentially promoting mother-infant recognition, reducing intragroup conflict or counteracting behavioural mechanisms of paternity confusion; cues that also advertise fetal sex may additionally facilitate differential sex allocation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Corticosterone exposure during prenatal development as a result of maternal upregulation of circulating hormone levels has been shown to have effects on offspring development in mammals. Corticosterone has also been documented in egg yolk in oviparous vertebrates, but the extent to which this influences phenotypic development is less studied. We show that maternal corticosterone is transferred to egg yolk in an oviparous lizard (the mallee dragon, Ctenophorus fordi Storr), with significant variation among clutches in hormone levels. Experimental elevation of yolk corticosterone did not affect hatching success, incubation period or offspring sex ratio. However, corticosterone did have a sex-specific effect on skeletal growth during embryonic development. Male embryos exposed to relatively high levels of corticosterone were smaller on average than control males at hatching whereas females from hormone-treated eggs were larger on average than control females. The data thus suggest that males are not just more sensitive to the detrimental effects of corticosterone but rather that the sexes may have opposite responses to corticosterone during development. Positive selection on body size at hatching for both sexes in this species further suggests that increased corticosterone in egg yolk may have sex-specific fitness consequences, with potential implications for sex allocation and the evolution of hormone-mediated maternal effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Little grassbirds (Megalurus gramineus) are small, sexually monomorphic passerines that live in reed beds, lignum swamps and salt marshes in southern Australia. The breeding biology and patterns of sex allocation of the little grassbird were investigated over a single breeding season. Our observations of this species in the Edithvale Wetland Reserve revealed a highly male-biased population sex ratio, with some breeding territories containing several additional males. Nevertheless, there was little compelling evidence that little grassbirds breed cooperatively. The growth rates of male and female nestlings were similar and, as predicted by theory, there was no overall primary sex ratio bias. However, the primary sex ratio was female-biased early in the breeding season and became increasingly male-biased later in the breeding season.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Female birds have been shown to have a remarkable degree of control over the sex ratio of the offspring they produce. However, it remains poorly understood how these skews are achieved. Female condition, and consequent variation in circulating hormones, provides a plausible mechanistic link between offspring sex biases and the environmental and social stresses commonly invoked to explain adaptive sex allocation, such as diet, territory quality, and body condition. However, although experimental studies have shown that female perception of male phenotype alone can lead to sex ratio biases, it is unknown how partner quality influences female physiological state. Using a controlled within-female experimental design where female Gouldian finches (Erythrura gouldiae) bred with both high- and low-quality males, we found that partner quality directly affects female hormonal status and subsequent fitness. When constrained to breeding with low-quality males, females had highly elevated stress responses (corticosterone levels) and produced adaptive male-biased sex ratios, whereas when they bred with high-quality males, females had low corticosterone levels and produced an equal offspring sex ratio. There was no effect of other maternal hormones (e.g., testosterone) or body condition on offspring sex ratios. Female physiological condition during egg production, and variation in circulating hormones in particular, may provide a general mechanistic route for strategic sex allocation in birds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Theory predicts that mothers should adjust offspring sex ratios when the expected fitness gains or rearing costs differ between sons and daughters. Recent empirical work has linked biased offspring sex ratios to environmental quality via changes in relative maternal condition. It is unclear, however, whether females can manipulate offspring sex ratios in response to environmental quality alone (i.e. independent of maternal condition). We used a balanced within-female experimental design (i.e. females bred on both low- and high-quality diets) to show that female parrot finches (Erythrura trichroa) manipulate primary offspring sex ratios to the quality of the rearing environment, and not to their own body condition and health. Individual females produced an unbiased sex ratio on high-quality diets, but over-produced sons in poor dietary conditions, even though they maintained similar condition between diet treatments. Despite the lack of sexual size dimorphism, such sex ratio adjustment is in line with predictions from sex allocation theory because nutritionally stressed foster sons were healthier, grew faster and were more likely to survive than daughters. These findings suggest that mothers may adaptively adjust offspring sex ratios to optimally match their offspring to the expected quality of the rearing environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Sex allocation theory has received considerable attention, yet the mechanism(s) by which mothers skew offspring sex ratios remain unknown. In birds, females are the heterogametic sex, which potentially gives them control of whether gametes will be male or female. How females might control the sex of the gamete is unclear, but one possibility is that variation in steroid hormones may mediate this process. 2. We experimentally altered circulating levels of corticosterone in female Gouldian finches (Erythrura gouldiae), a species that demonstrates both extreme stress responses and extreme offspring sex ratio biases when breeding with a low-quality (genetically incompatible) partner. 3. During egg production, individual females received both corticosterone and metyrapone (a corticosterone-synthesis inhibitor) implants, in random order, to induce both high and low levels of circulating stress hormones (within physiological limits). 4. We found that females with elevated corticosterone levels produced male-biased sex ratios, but when the same females were treated with metyrapone they produced female-biased offspring sex ratios. 5. These stress responses are adaptive because females constrained to breeding with low-quality males can substantially increase their fitness by overproducing sons. Changes in maternal corticosterone levels during stressful situations, such as the quality of a breeding partner, may provide an endocrine mechanism that can be exploited for strategic sex allocation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When the relative fitness of sons and daughters differs, sex-allocation theory predicts that it would be adaptive for individuals to adjust their investment in different sexes of offspring. Sex ratio adjustment by females in response to the sexual attractiveness of their mate would be an example of this. In vertebrates the existence of this form of sex ratio adjustment is controversial and may be confounded with sex-biased mortality, particularly in sexually size-dimorphic species. Here we use PCR amplification of a conserved W-chromosome-linked gene to show that the sex ratio within broods of a natural population of sexually size-monomorphic collared flycatchers Ficedula albicollis is related to the size of their father's forehead patch, a heritable secondary sexual character implicated in female choice. Experimental manipulations of paternal investment, which influence the size of his character in future breeding attempts, result in corresponding changes in the sex ratio of offspring born to males in those breeding attempts. In contrast, manipulations of maternal investment have no effect on future sex ratios, and there is no relationship between variables predicting the reproductive value of the brood and nestling sex ratio. Analysis of recruitment of offspring reveals similar patterns of sex ratio bias. The results suggest that female collared flycatchers be able to adjust the sex ratio of eggs ovulated in response to the phenotype of their mate. This finding is most consistent with "genetic quality" models of sexual selection.