958 resultados para sequent calculus
Resumo:
For first-order classical logic a new notion of admissible substitution is defined. This notion allows optimizing the procedure of the application of quantifier rules when logical inference search is made in sequent calculi. Our objective is to show that such a computer-oriented sequent technique may be created that does not require a preliminary skolemization of initial formulas and that is efficiently comparable with methods exploiting the skolemization. Some results on its soundness and completeness are given.
Resumo:
After Gödel's incompleteness theorems and the collapse of Hilbert's programme Gerhard Gentzen continued the quest for consistency proofs of Peano arithmetic. He considered a finitistic or constructive proof still possible and necessary for the foundations of mathematics. For a proof to be meaningful, the principles relied on should be considered more reliable than the doubtful elements of the theory concerned. He worked out a total of four proofs between 1934 and 1939. This thesis examines the consistency proofs for arithmetic by Gentzen from different angles. The consistency of Heyting arithmetic is shown both in a sequent calculus notation and in natural deduction. The former proof includes a cut elimination theorem for the calculus and a syntactical study of the purely arithmetical part of the system. The latter consistency proof in standard natural deduction has been an open problem since the publication of Gentzen's proofs. The solution to this problem for an intuitionistic calculus is based on a normalization proof by Howard. The proof is performed in the manner of Gentzen, by giving a reduction procedure for derivations of falsity. In contrast to Gentzen's proof, the procedure contains a vector assignment. The reduction reduces the first component of the vector and this component can be interpreted as an ordinal less than epsilon_0, thus ordering the derivations by complexity and proving termination of the process.
Resumo:
In this thesis we propose a new approach to deduction methods for temporal logic. Our proposal is based on an inductive definition of eventualities that is different from the usual one. On the basis of this non-customary inductive definition for eventualities, we first provide dual systems of tableaux and sequents for Propositional Linear-time Temporal Logic (PLTL). Then, we adapt the deductive approach introduced by means of these dual tableau and sequent systems to the resolution framework and we present a clausal temporal resolution method for PLTL. Finally, we make use of this new clausal temporal resolution method for establishing logical foundations for declarative temporal logic programming languages. The key element in the deduction systems for temporal logic is to deal with eventualities and hidden invariants that may prevent the fulfillment of eventualities. Different ways of addressing this issue can be found in the works on deduction systems for temporal logic. Traditional tableau systems for temporal logic generate an auxiliary graph in a first pass.Then, in a second pass, unsatisfiable nodes are pruned. In particular, the second pass must check whether the eventualities are fulfilled. The one-pass tableau calculus introduced by S. Schwendimann requires an additional handling of information in order to detect cyclic branches that contain unfulfilled eventualities. Regarding traditional sequent calculi for temporal logic, the issue of eventualities and hidden invariants is tackled by making use of a kind of inference rules (mainly, invariant-based rules or infinitary rules) that complicates their automation. A remarkable consequence of using either a two-pass approach based on auxiliary graphs or aone-pass approach that requires an additional handling of information in the tableau framework, and either invariant-based rules or infinitary rules in the sequent framework, is that temporal logic fails to carry out the classical correspondence between tableaux and sequents. In this thesis, we first provide a one-pass tableau method TTM that instead of a graph obtains a cyclic tree to decide whether a set of PLTL-formulas is satisfiable. In TTM tableaux are classical-like. For unsatisfiable sets of formulas, TTM produces tableaux whose leaves contain a formula and its negation. In the case of satisfiable sets of formulas, TTM builds tableaux where each fully expanded open branch characterizes a collection of models for the set of formulas in the root. The tableau method TTM is complete and yields a decision procedure for PLTL. This tableau method is directly associated to a one-sided sequent calculus called TTC. Since TTM is free from all the structural rules that hinder the mechanization of deduction, e.g. weakening and contraction, then the resulting sequent calculus TTC is also free from this kind of structural rules. In particular, TTC is free of any kind of cut, including invariant-based cut. From the deduction system TTC, we obtain a two-sided sequent calculus GTC that preserves all these good freeness properties and is finitary, sound and complete for PLTL. Therefore, we show that the classical correspondence between tableaux and sequent calculi can be extended to temporal logic. The most fruitful approach in the literature on resolution methods for temporal logic, which was started with the seminal paper of M. Fisher, deals with PLTL and requires to generate invariants for performing resolution on eventualities. In this thesis, we present a new approach to resolution for PLTL. The main novelty of our approach is that we do not generate invariants for performing resolution on eventualities. Our method is based on the dual methods of tableaux and sequents for PLTL mentioned above. Our resolution method involves translation into a clausal normal form that is a direct extension of classical CNF. We first show that any PLTL-formula can be transformed into this clausal normal form. Then, we present our temporal resolution method, called TRS-resolution, that extends classical propositional resolution. Finally, we prove that TRS-resolution is sound and complete. In fact, it finishes for any input formula deciding its satisfiability, hence it gives rise to a new decision procedure for PLTL. In the field of temporal logic programming, the declarative proposals that provide a completeness result do not allow eventualities, whereas the proposals that follow the imperative future approach either restrict the use of eventualities or deal with them by calculating an upper bound based on the small model property for PLTL. In the latter, when the length of a derivation reaches the upper bound, the derivation is given up and backtracking is used to try another possible derivation. In this thesis we present a declarative propositional temporal logic programming language, called TeDiLog, that is a combination of the temporal and disjunctive paradigms in Logic Programming. We establish the logical foundations of our proposal by formally defining operational and logical semantics for TeDiLog and by proving their equivalence. Since TeDiLog is, syntactically, a sublanguage of PLTL, the logical semantics of TeDiLog is supported by PLTL logical consequence. The operational semantics of TeDiLog is based on TRS-resolution. TeDiLog allows both eventualities and always-formulas to occur in clause heads and also in clause bodies. To the best of our knowledge, TeDiLog is the first declarative temporal logic programming language that achieves this high degree of expressiveness. Since the tableau method presented in this thesis is able to detect that the fulfillment of an eventuality is prevented by a hidden invariant without checking for it by means of an extra process, since our finitary sequent calculi do not include invariant-based rules and since our resolution method dispenses with invariant generation, we say that our deduction methods are invariant-free.
Resumo:
RelAPS is an interactive system assisting in proving relation-algebraic theorems. The aim of the system is to provide an environment where a user can perform a relation-algebraic proof similar to doing it using pencil and paper. The previous version of RelAPS accepts only Horn-formulas. To extend the system to first order logic, we have defined and implemented a new language based on theory of allegories as well as a new calculus. The language has two different kinds of terms; object terms and relational terms, where object terms are built from object constant symbols and object variables, and relational terms from typed relational constant symbols, typed relational variables, typed operation symbols and the regular operations available in any allegory. The calculus is a mixture of natural deduction and the sequent calculus. It is formulated in a sequent style but with exactly one formula on the right-hand side. We have shown soundness and completeness of this new logic which verifies that the underlying proof system of RelAPS is working correctly.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The central topic of this thesis is the study of algorithms for type checking, both from the programming language and from the proof-theoretic point of view. A type checking algorithm takes a program or a proof, represented as a syntactical object, and checks its validity with respect to a specification or a statement. It is a central piece of compilers and proof assistants. We postulate that since type checkers are at the interface between proof theory and program theory, their study can let these two fields mutually enrich each other. We argue by two main instances: first, starting from the problem of proof reuse, we develop an incremental type checker; secondly, starting from a type checking program, we evidence a novel correspondence between natural deduction and the sequent calculus.
Resumo:
Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In Richard McKinley (2010) [22], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK∗ in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of Richard McKinley (2010) [22]), we give a full proof of (c) for expansion nets with respect to LK∗, and in addition give a cut-elimination procedure internal to expansion nets – this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.
Resumo:
Frank Ramsey (1931) estableció ciertas condiciones que deberían cumplirse a fin de evaluar las proposiciones condicionales, conocidas hoy como Test de Ramsey (TR) En este trabajo se muestra que las teorías sobre condicionales contrafácticos de Chisholmj, Stalnaker y D. Lewis, satisfacen el TR y la incompatibilidad de TR con la Teoría de la revisión de creencias (AGM). En la última sección se analiza el comportamiento del TR en la propuesta de G. Grocco y L. Fariñas del Cerro, basada en una generalización del cálculo de Secuentes pero introduciendo la novedad de secuencias auxiliares cuya noción de consecuencia es no-monótona.
Resumo:
Frank Ramsey (1931) estableció ciertas condiciones que deberían cumplirse a fin de evaluar las proposiciones condicionales, conocidas hoy como Test de Ramsey (TR) En este trabajo se muestra que las teorías sobre condicionales contrafácticos de Chisholmj, Stalnaker y D. Lewis, satisfacen el TR y la incompatibilidad de TR con la Teoría de la revisión de creencias (AGM). En la última sección se analiza el comportamiento del TR en la propuesta de G. Grocco y L. Fariñas del Cerro, basada en una generalización del cálculo de Secuentes pero introduciendo la novedad de secuencias auxiliares cuya noción de consecuencia es no-monótona.
Resumo:
Frank Ramsey (1931) estableció ciertas condiciones que deberían cumplirse a fin de evaluar las proposiciones condicionales, conocidas hoy como Test de Ramsey (TR) En este trabajo se muestra que las teorías sobre condicionales contrafácticos de Chisholmj, Stalnaker y D. Lewis, satisfacen el TR y la incompatibilidad de TR con la Teoría de la revisión de creencias (AGM). En la última sección se analiza el comportamiento del TR en la propuesta de G. Grocco y L. Fariñas del Cerro, basada en una generalización del cálculo de Secuentes pero introduciendo la novedad de secuencias auxiliares cuya noción de consecuencia es no-monótona.
Resumo:
Time plays an important role in norms. In this paper we start from our previously proposed classification of obligations, and point out some shortcomings of Event Calculus (EC) to represent obligations. We proposed an extension of EC that avoids such shortcomings and we show how to use it to model the various types of obligations.
Resumo:
Many students of calculus are not aware that the calculus they have learned is a special case (integer order) of fractional calculus. Fractional calculus is the study of arbitrary order derivatives and integrals and their applications. The article begins by stating a naive question from a student in a paper by Larson (1974) and establishes, for polynomials and exponential functions, that they can be deformed into their derivative using the μ-th order fractional derivatives for 0<μ<1. Through the power of Excel we illustrate the continuous deformations dynamically through conditional formatting. Some applications are discussed and a connection made to mathematics education.
Resumo:
Permissions are special case of deontic effects and play important role compliance. Essentially they are used to determine the obligations or prohibitions to contrary. A formal language e.g., temporal logic, event-calculus et., not able to represent permissions is doomed to be unable to represent most of the real-life legal norms. In this paper we address this issue and extend deontic-event-calculus (DEC) with new predicates for modelling permissions enabling it to elegantly capture the intuition of real-life cases of permissions.