72 resultados para semivariograms
Resumo:
Two methods were evaluated for scaling a set of semivariograms into a unified function for kriging estimation of field-measured properties. Scaling is performed using sample variances and sills of individual semivariograms as scale factors. Theoretical developments show that kriging weights are independent of the scaling factor which appears simply as a constant multiplying both sides of the kriging equations. The scaling techniques were applied to four sets of semivariograms representing spatial scales of 30 x 30 m to 600 x 900 km. Experimental semivariograms in each set successfully coalesced into a single curve by variances and sills of individual semivariograms. To evaluate the scaling techniques, kriged estimates derived from scaled semivariogram models were compared with those derived from unscaled models. Differences in kriged estimates of the order of 5% were found for the cases in which the scaling technique was not successful in coalescing the individual semivariograms, which also means that the spatial variability of these properties is different. The proposed scaling techniques enhance interpretation of semivariograms when a variety of measurements are made at the same location. They also reduce computational times for kriging estimations because kriging weights only need to be calculated for one variable. Weights remain unchanged for all other variables in the data set whose semivariograms are scaled.
Resumo:
There is a great lack of information from soil surveys in the southern part of the State of Amazonas, Brazil. The use of tools such as geostatistics may improve environmental planning, use and management. In this study, we aimed to use scaled semivariograms in sample design of soil physical properties of some environments in Amazonas. We selected five areas located in the south of the state of Amazonas, Brazil, with varied soil uses, such as forest, archaeological dark earth (ADE), pasture, sugarcane cropping, and agroforestry. Regular mesh grids were set up in these areas with 64 sample points spaced at 10 m from each other. At these points, we determined the particle size composition, soil resistance to penetration, moisture, soil bulk density and particle density, macroporosity, microporosity, total porosity, and aggregate stability in water at a depth of 0.00-0.20 m. Descriptive and geostatistical analyses were performed. The sample density requirements were lower in the pasture area but higher in the forest. We concluded that managed-environments had differences in their soil physical properties compared to the natural forest; notably, the soil in the ADE environment is physically improved in relation to the others. The physical properties evaluated showed a structure of spatial dependence with a slight variability of the forest compared to the others. The use of the range parameter of the semivariogram analysis proved to be effective in determining an ideal sample density.
Resumo:
The lack of information concerning the variability of soil properties has been a major concern of researchers in the Amazon region. Thus, the aim of this study was to evaluate the spatial variability of soil chemical properties and determine minimal sampling density to characterize the variability of these properties in five environments located in the south of the State of Amazonas, Brazil. The five environments were archaeological dark earth (ADE), forest, pasture land, agroforestry operation, and sugarcane crop. Regular 70 × 70 m mesh grids were set up in these areas, with 64 sample points spaced at 10 m distance. Soil samples were collected at the 0.0-0.1 m depth. The chemical properties of pH in water, OM, P, K, Ca, Mg, H+Al, SB, CEC, and V were determined at these points. Data were analyzed by descriptive and geostatistical analyses. A large part of the data analyzed showed spatial dependence. Chemical properties were best fitted to the spherical model in almost all the environments evaluated, except for the sugarcane field with a better fit to the exponential model. ADE and sugarcane areas had greater heterogeneity of soil chemical properties, showing a greater range and higher sampling density; however, forest and agroforestry areas had less variability of chemical properties.
Resumo:
Spatial sampling designs used to characterize the spatial variability of soil attributes are crucial for science studies. Sample planning for the interpolation of a regionalized variable may use several criteria, which could be best selected from an estimated semivariogram from a previously established grid. The objective of this study was to optimize the procedure for scaled semivariogram use to plan soil sampling in sugarcane fields in the Alfisol and Oxisol regions of Jaboticabal Town in So Paulo State, Brazil. A scaled semivariogram for several soil chemical attributes was estimated from the data obtained from two grids positioned on a sugarcane field area, sampled at a depth of 0.0-0.5 m. The research showed that regular grids with uniform intervals did not express the real spatial variability of the soil attributes of Oxisols and Alfisols in the study area. The calculated final sampling density based on the scaled parameters of the semivariogram was one sample for each 2 ha in Area 1 (convex landscape) and one sample for each 1 ha in Area 2 (linear landscape), as indicated by SANOS 0.1 software. The combined use of the simulation programs and scaled semivariograms can be used to define sampling points. These results may help in soil fertility mapping and thereby improve nutrient management in sugarcane crops.
Resumo:
Soil CO(2) emissions are highly variable, both spatially and across time, with significant changes even during a one-day period. The objective of this study was to compare predictions of the diurnal soil CO(2) emissions in an agricultural field when estimated by ordinary kriging and sequential Gaussian simulation. The dataset consisted of 64 measurements taken in the morning and in the afternoon on bare soil in southern Brazil. The mean soil CO(2) emissions were significantly different between the morning (4.54 mu mol m(-2) s(-1)) and afternoon (6.24 mu mol m(-2) s(-1)) measurements. However, the spatial variability structures were similar, as the models were spherical and had close range values of 40.1 and 40.0 m for the morning and afternoon semivariograms. In both periods, the sequential Gaussian simulation maps were more efficient for the estimations of emission than ordinary kriging. We believe that sequential Gaussian simulation can improve estimations of soil CO(2) emissions in the field, as this property is usually highly non-Gaussian distributed.
Resumo:
A combinação da agricultura de precisão e do Sistema Integrado de Recomendação Foliar (DRIS) possibilita monitorar espacialmente o balanço nutricional dos cafezais para fornecer recomendações de adubação mais equilibradas e mais ajustadas economicamente. O objetivo deste trabalho foi avaliar a variabilidade espacial do estado nutricional do cafeeiro conilon, utilizando o Índice de Balanço Nutricional (IBN) e sua relação com a produtividade. A produtividade das plantas em cada ponto amostral foi determinada e construiu-se o seu mapa considerando a variabilidade espacial; determinou-se o Índice de Equilíbrio Nutricional (IBN) das plantas em cada ponto amostral e construiu-se o seu mapa; e utilizou-se a análise de componentes principais (ACP) para estimar o IBN do cafeeiro por cokrigagem. Os dados do cafeeiro conilon foram coletados em fazenda experimental, no município de Cachoeiro de Itapemirim-ES. O IBN do cafeeiro e a sua produtividade foram analisados por meio de geoestatística, com base nos modelos e parâmetros dos semivariogramas, utilizando o método de interpolação krigagem ordinária para estimar valores para locais não amostrados. O índice de Balanço Nutricional da lavoura do cafeeiro conilon apresentou dependência espacial, porém não apresentou correlação linear e nem espacial com a produtividade. A lavoura em estudo se encontra em desequilíbrio nutricional, sendo que entre os macronutrientes, o Potássio foi o que apresentou maior desequilíbrio na área, entre os micronutrientes, o Zinco e o Ferro foram os que apresentaram menores concentrações nas folhas. A confecção dos mapas possibilitou a distinção de regiões com maior e menor desequilíbrio nutricional e produtividade, o que possibilita adotar o manejo de forma diferenciada e localizada. A análise multivariada baseada em componentes principais fornece componentes com alta correlação com as variáveis originais P, Ca, Zn , Cu, K e B. A cokrigagem utilizando as componentes principais permite estimar o IBN e a produtividade da área.
Resumo:
Nos anos mais recentes, observa-se aumento na adoção das técnicas de silvicultura de precisão em florestas plantadas no Brasil. Os plantios de eucalipto ocorrem preferencialmente em áreas com baixa fertilidade de solo e consequentemente baixa produtividade. Logo, para otimizar ao máximo a produção, é necessário saber o quanto essa cultura pode produzir em cada local (sítio). Objetivou-se aplicar uma metodologia que utiliza técnicas de estatística, geoestatística e geoprocessamento, no mapeamento da variabilidade espacial e temporal de atributos químicos do solo cultivado com eucalipto, em área de 10,09 ha, situada no sul do estado do Espírito Santo. Os atributos químicos da fertilidade do solo estudados foram: fósforo (P), potássio (K), cálcio (Ca) e magnésio (Mg), no ano da implantação do povoamento do eucalipto, em 2008, e três anos após, em 2011. O solo foi amostrado em duas profundidades, 0-0,2 m e 0,2-0,4 m, nos 94 pontos de uma malha regular, com extensão de 33 x 33 m. Os dados foram analisados pela estatística descritiva e, em seguida, pela geoestatística, por meio do ajuste de semivariogramas. Diferentes métodos de interpolação foram testados para produzir mapas temáticos mais precisos e facilitar as operações algébricas utilizadas. Com o auxílio de índices quantitativos, realizou-se uma análise geral da fertilidade do solo, por meio da álgebra de mapas. A metodologia utilizada neste estudo possibilitou mapear a variabilidade espacial e temporal de atributos químicos do solo. A análise variográfica mostrou que todos os atributos estudados apresentaram-se estruturados espacialmente, exceto para o atributo P, no Ano Zero (camada 0-0,2 m) e no Ano Três (ambas as camadas). Os melhores métodos de interpolação para o mapeamento de cada atributo químico do solo foram identificados com a ajuda gráfica do Diagrama de Taylor. Mereceram destaque, os modelos esférico e exponencial nas interpolações para a maioria dos atributos químicos do solo avaliados. Apesar de a variação espacial e temporal dos atributos estudados apresentar-se, em média, com pequena variação negativa, a metodologia usada mostrou variações positivas na fertilidade do solo em várias partes da área de estudo. Além disso, os resultados demonstram que os efeitos observados são majoritariamente em função da cultura, uma vez que não foram coletadas amostras de solo em locais adubados. A produtividade do sítio florestal apresentou-se com tendências semelhantes às variações ocorridas na fertilidade do solo, exceto para o magnésio, que se mostrou com tendências espaciais para suporte de elevadas produtividades, de até 50 m3 ha-1 ano-1. Além de mostrar claramente as tendências observadas para as variações na fertilidade do solo, a metodologia utilizada confirma um caminho operacional acessível para empresas e produtores florestais para o manejo nutricional em florestas plantadas. O uso dos mapas facilita a mobilização de recursos para melhorar a aplicação de fertilizantes e corretivos necessários.
Resumo:
Assessing the spatial variability of soil chemical properties has become an important aspect of soil management strategies with a view to higher crop yields with minimal environmental degradation. This study was carried out at the Centro Experimental of the Instituto Agronomico, in Campinas, São Paulo, Brazil. The aim was to characterize the spatial variability of chemical properties of a Rhodic Hapludox on a recently bulldozer-cleaned area after over 30 years of coffee cultivation. Soil samples were collected in a 20 x 20 m grid with 36 sampling points across a 1 ha area in the layers 0.0-0.2 and 0.2-0.4 m to measure the following chemical properties: pH, organic matter, K+, P, Ca2+, Mg2+, potential acidity, NH4-N, and NO3-N. Descriptive statistics were applied to assess the central tendency and dispersion moments. Geostatistical methods were applied to evaluate and to model the spatial variability of variables by calculating semivariograms and kriging interpolation. Spatial dependence patterns defined by spherical model adjusted semivariograms were made for all cited soil properties. Moderate to strong degrees of spatial dependence were found between 31 and 60 m. It was still possible to map soil spatial variability properties in the layers 0-20 cm and 20-40 cm after plant removal with bulldozers.
Resumo:
Information on the spatial structure of soil physical and structural properties is needed to evaluate the soil quality. The purpose of this study was to investigate the spatial behavior of preconsolidation pressure and soil moisture in six transects, three selected along and three across coffee rows, at three different sites under different tillage management systems. The study was carried out on a farm, in Patrocinio, state of Minas Gerais, in the Southeast of Brazil (18 º 59 ' 15 '' S; 46 º 56 ' 47 '' W; 934 m asl). The soil type is a typic dystrophic Red Latosol (Acrustox) and consists of 780 g kg-1 clay; 110 g kg-1 silt and 110 g kg-1 sand, with an average slope of 3 %. Undisturbed soil cores were sampled at a depth of 0.10-0.13 m, at three different points within the coffee plantation: (a) from under the wheel track, where equipment used in farm operations passes; (b) in - between tracks and (c) under the coffee canopy. Six linear transects were established in the experimental area: three transects along and three across the coffee rows. This way, 161 samples were collected in the transect across the coffee rows, from the three locations, while 117 samples were collected in the direction along the row. The shortest sampling distance in the transect across the row was 4 m, and 0.5 m for the transect along the row. No clear patterns of the preconsolidation pressure values were observed in the 200 m transect. The results of the semivariograms for both variables indicated a high nugget value and short range for the studied parameters of all transects. A cyclic pattern of the parameters was observed for the across-rows transect. An inverse relationship between preconsolidation pressure and soil moisture was clearly observed in the samples from under the track, in both directions.
Resumo:
Although the influence of clay mineralogy on soil physical properties has been widely studied, spatial relationships between these features in Alfisols have rarely been examined. The purpose of this work was to relate the clay minerals and physical properties of an Alfisol of sandstone origin in two slope curvatures. The crystallographic properties such as mean crystallite size (MCS) and width at half height (WHH) of hematite, goethite, kaolinite and gibbsite; contents of hematite and goethite; aluminium substitution (AS) and specific surface area (SSA) of hematite and goethite; the goethite/(goethite+hematite) and kaolinite/(kaolinite+gibbsite) ratios; and the citrate/bicarbonate/dithionite extractable Fe (Fe d) were correlated with the soil physical properties through Pearson correlation coefficients and cross-semivariograms. The correlations found between aluminium substitution in goethite and the soil physical properties suggest that the degree of crystallinity of this mineral influences soil properties used as soil quality indicators. Thus, goethite with a high aluminium substitution resulted in large aggregate sizes and a high porosity, and also in a low bulk density and soil penetration resistance. The presence of highly crystalline gibbsite resulted in a high density and micropore content, as well as in smaller aggregates. Interpretation of the cross-semivariogram and classification of landscape compartments in terms of the spatial dependence pattern for the relief-dependent physical and mineralogical properties of the soil proved an effective supplementary method for assessing Pearson correlations between the soil physical and mineralogical properties.
Resumo:
Epigeous termite mounds are frequently observed in pasture areas, but the processes regulating their population dynamics are poorly known. This study evaluated epigeous termite mounds in cultivated grasslands used as pastures, assessing their spatial distribution by means of geostatistics and evaluating their vitality. The study was conducted in the Cerrado biome in the municipality of Rio Brilhante, Mato Grosso do Sul, Brazil. In two pasture areas (Pasture 1 and Pasture 2), epigeous mounds (nests) were georeferenced and analyzed for height, circumference and vitality (inhabited or not). The area occupied by the mounds was calculated and termite specimens were collected for taxonomic identification. The spatial distribution pattern of the mounds was analyzed with geostatistical procedures. In both pasture areas, all epigeous mounds were built by the same species, Cornitermes cumulans. The mean number of mounds per hectare was 68 in Pasture 1 and 127 in Pasture 2, representing 0.4 and 1 % of the entire area, respectively. A large majority of the mounds were active (vitality), 91 % in Pasture 1 and 84 % in Pasture 2. A “pure nugget effect” was observed in the semivariograms of height and nest circumference in both pastures reflecting randomized spatial distribution and confirming that the distribution of termite mounds in pastures had a non-standard distribution.
Resumo:
ABSTRACT The study of soil chemical and physical properties variability is important for suitable management practices. The aim of this study was to evaluate the spatial variability of soil properties in the Malhada do Meio settlement to subsidize soil use planning. The settlement is located in Chapadinha, MA, Brazil, and has an area of 630.86 ha. The vegetation is seasonal submontane deciduous forest and steppe savanna. The geology is formed of sandstones and siltstones of theItapecuru Formation and by colluvial and alluvial deposits. The relief consists of hills with rounded and flat tops with an average altitude of 67 m, and frequently covered over by ferruginous duricrusts. A total of 183 georeferenced soil samples were collected at the depth of 0.00-0.20 m inPlintossolos, Neossolo andGleissolo. The following chemical variables were analyzed: pH(CaCl2), H+Al, Al, SB, V, CEC, P, K, OM, Ca, Mg, SiO2, Al2O3, and Fe2O3; along with particle size variables: clay, silt, and sand. Descriptive statistical and geostatistical analyses were carried out. The coefficient of variation (CV) was high for most of the variables, with the exception of pH with a low CV, and of sand with a medium CV. The models fitted to the experimental semivariograms of these variables were the exponential and the spherical. The range values were from 999 m to 3,690 m. For the variables pH(CaCl2), SB, and clay, there are three specific areas for land use planning. The central part of the area (zone III), where thePlintossolos Pétricos and Neossolos Flúvicos occur, is the most suitable for crops due to higher macronutrient content, organic matter and pH. Zones I and II are indicated for environmental preservation.
Resumo:
The objective of this work was to select semivariogram models to estimate the population density of fig fly (Zaprionus indianus; Diptera: Drosophilidae) throughout the year, using ordinary kriging. Nineteen monitoring sites were demarcated in an area of 8,200 m2, cropped with six fruit tree species: persimmon, citrus, fig, guava, apple, and peach. During a 24 month period, 106 weekly evaluations were done in these sites. The average number of adult fig flies captured weekly per trap, during each month, was subjected to the circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, hole effect, K-Bessel, J-Bessel, and stable semivariogram models, using ordinary kriging interpolation. The models with the best fit were selected by cross-validation. Each data set (months) has a particular spatial dependence structure, which makes it necessary to define specific models of semivariograms in order to enhance the adjustment to the experimental semivariogram. Therefore, it was not possible to determine a standard semivariogram model; instead, six theoretical models were selected: circular, Gaussian, hole effect, K-Bessel, J-Bessel, and stable.
Resumo:
The technique of precision agriculture and soil-landscape allows delimiting areas for localized management, allowing a localized application of agricultural inputs and thereby may contribute to preservation of natural resources. Therefore, the objective of this work was to characterize the spatial variability of chemical properties and clay content in the context of soil-landscape relationship in a Latosol (Oxisol) under cultivation of citrus. Soil samples were collected at a depth of 0.0-0.2 m in an area of 83.5 ha planted with citrus, as a 50-m intervals grid, with 129 points in concave terrain and 206 points in flat terrain, totaling 335 points. Values for the variables that express the chemical characteristics and clay content of soil properties were analyzed with descriptive statistics and geostatistical modeling of semivariograms for making maps of kriging. The values of range and kriging maps indicated higher variability in the shape of concave topography (top segment) compared with the shape of flat topography (slope and hillside segments below). The identification of different forms of terrain proved to be efficient in understanding the spatial variability of chemical properties and clay content of soil under cultivation of citrus.
Resumo:
Since the advent of mechanized farming and intensive use of agricultural machinery and implements on the properties, the soil began to receive greater load of machinery traffic, which can cause increased soil compaction. The aim of this study was to evaluate the spatial variability of soil mechanical resistance to penetration (RP) in the layers of 0.00-0.10, 0.10-0.20, 0.20-0.30 and 0.30-0.40m, using geostatistics in an area cultivated with mango in Haplic Vertisol of the northeastern semi-arid, with mobile unit equipped with electronic penetrometer. The RP data was collected in 56 points from an area of 3 ha, and random soil samples were collected to determine the soil moisture and texture. For RP data analysis we used descriptive statistics and geostatistics. The soil mechanical resistance to penetration presented increased variability, with adjustment of the spherical and exponential semivariograms in the layers. We found that 42% of the area in the layer of 0.10-0.20m showed RP values above 2.70 MPa. Maximum values of RP were found in the layer of 0.19-0.27m, predominantly in 56% of the area.