991 resultados para semi conductor cluster
Resumo:
SiC and AtB 12 have been prepared and their resistivities and Hall voltages measured. The resistivities and Hall voltages were measured by the Van der Pauw's method, using spring loaded tungsten contacts. In this method, the major requirement is to have samples of plane parallel surfaces of arbitrary shape with four small contacts at the circumference. Similar measurements were made with a number of SiC crystals obtained from the Norton Research Corporation (Canada)-Ltd., Carolina Aluminum Co., Exolon Co. and Carborundum Co. It was found that resistivity, carrier concentration and mobility of ions depend on the type of impurity. AtB 12 was prepared from the melt containing At and B in the ratio of 4:1. They formed amber-colour pseudo tetragonal crystals. As the crystals obtained were small for electrical measurements, hot pressed lumps have been used to measure their resistivity.
Resumo:
The optical and semiconductor properties of lead telluride coatings are dependant on various factors contributing to its performance. In this paper, we will present the temperature dependant effects of single layer lead telluride coatings on the dispersion and absorption characteristics, absorption edge, and carrier concentration from 15 K to 436 K using both experimental and theoretical analysis.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
In this paper, we report the preparation and characterisation of nanometer-sized TiO2, CdO, and ZnO semiconductor particles trapped in zeolite NaY. Preparation of these particles was carried out via the traditional ion exchange method and subsequent calcination procedure. It was found that the smaller cations, i.e., Cd2+ and Zn2+ could be readily introduced into the SI′ and SII′ sites located in the sodalite cages, through ion exchange; while this is not the case for the larger Ti species, i.e., Ti monomer [TiO]2+ or dimer [Ti2O3]2+ which were predominantly dispersed on the external surface of zeolite NaY. The subsequent calcination procedure promoted these Ti species to migrate into the internal surface of the supercages. These semiconductor particles confined in NaY zeolite host exhibited a significant blue shift in the UV-VIS absorption spectra, in contrast to the respective bulk semiconductor materials, due to the quantum size effect (QSE). The particle sizes calculated from the UV-VIS optical absorption spectra using the effective mass approximation model are in good agreement with the atomic absorption data.
Resumo:
The Six Sigma technique is one of the quality management strategies and is utilised for improving the quality and productivity in the manufacturing process. It is inspired by the two major project methodologies of Deming’s "Plan – Do – Check – Act (PDCA)" Cycle which consists of DMAIC and DMADV. Those two methodologies are comprised of five phases. The DMAIC project methodology will be comprehensively used in this research. In brief, DMAIC is utilised for improving the existing manufacturing process and it involves the phases Define, Measure, Analyse, Improve, and Control. Mask industry has become a significant industry in today’s society since the outbreak of some serious diseases such as the Severe Acute Respiratory Syndrome (SARS), bird flu, influenza, swine flu and hay fever. Protecting the respiratory system, then, has become the fundamental requirement for preventing respiratory deceases. Mask is the most appropriate and protective product inasmuch as it is effective in protecting the respiratory tract and resisting the virus infection through air. In order to satisfy various customers’ requirements, thousands of mask products are designed in the market. Moreover, masks are also widely used in industries including medical industries, semi-conductor industries, food industries, traditional manufacturing, and metal industries. Notwithstanding the quality of masks have become the prioritisations since they are used to prevent dangerous diseases and safeguard people, the quality improvement technique are of very high significance in mask industry. The purpose of this research project is firstly to investigate the current quality control practices in a mask industry, then, to explore the feasibility of using Six Sigma technique in that industry, and finally, to implement the Six Sigma technique in the case company to develop and evaluate the product quality process. This research mainly investigates the quality problems of musk industry and effectiveness of six sigma technique in musk industry with the United Excel Enterprise Corporation (UEE) Company as a case company. The DMAIC project methodology in the Six Sigma technique is adopted and developed in this research. This research makes significant contribution to knowledge. The main results contribute to the discovering the root causes of quality problems in a mask industry. Secondly, the company was able to increase not only acceptance rate but quality level by utilising the Six Sigma technique. Hence, utilising the Six Sigma technique could increase the production capacity of the company. Third, the Six Sigma technique is necessary to be extensively modified to improve the quality control in the mask industry. The impact of the Six Sigma technique on the overall performance in the business organisation should be further explored in future research.
Resumo:
Collisions between pedestrians and vehicles continue to be a major problem throughout the world. Pedestrians trying to cross roads and railway tracks without any caution are often highly susceptible to collisions with vehicles and trains. Continuous financial, human and other losses have prompted transport related organizations to come up with various solutions addressing this issue. However, the quest for new and significant improvements in this area is still ongoing. This work addresses this issue by building a general framework using computer vision techniques to automatically monitor pedestrian movements in such high-risk areas to enable better analysis of activity, and the creation of future alerting strategies. As a result of rapid development in the electronics and semi-conductor industry there is extensive deployment of CCTV cameras in public places to capture video footage. This footage can then be used to analyse crowd activities in those particular places. This work seeks to identify the abnormal behaviour of individuals in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM), Full-2D HMM and Spatial HMM to model the normal activities of people. The outliers of the model (i.e. those observations with insufficient likelihood) are identified as abnormal activities. Location features, flow features and optical flow textures are used as the features for the model. The proposed approaches are evaluated using the publicly available UCSD datasets, and we demonstrate improved performance using a Semi-2D Hidden Markov Model compared to other state of the art methods. Further we illustrate how our proposed methods can be applied to detect anomalous events at rail level crossings.
Resumo:
The rectangular dielectric waveguide is the most commonly used structure in integrated optics, especially in semi-conductor diode lasers. Demands for new applications such as high-speed data backplanes in integrated electronics, waveguide filters, optical multiplexers and optical switches are driving technology toward better materials and processing techniques for planar waveguide structures. The infinite slab and circular waveguides that we know are not practical for use on a substrate because the slab waveguide has no lateral confinement and the circular fiber is not compatible with the planar processing technology being used to make planar structures. The rectangular waveguide is the natural structure. In this review, we have discussed several analytical methods for analyzing the mode structure of rectangular structures, beginning with a wave analysis based on the pioneering work of Marcatili. We study three basic techniques with examples to compare their performance levels. These are the analytical approach developed by Marcatili, the perturbation techniques, which improve on the analytical solutions and the effective index method with examples.
Resumo:
In this paper we present and compare the results obtained from semi-classical and quantum mechanical simulation for a double gate MOSFET structure to analyze the electrostatics and carrier dynamics of this device. The geometries like gate length, body thickness of this device have been chosen according to the ITRS specification for the different technology nodes. We have shown the extent of deviation between the semi- classical and quantum mechanical results and hence the need of quantum simulations for the promising nanoscale devices in the future technology nodes predicted in ITRS.
Resumo:
The variation in the electrical resistivity of the chalcogenide glasses Ge15Te85-x has been studied as a function of high pressure for pressures up to 8.5GPa. All the samples studied undergo a semi-conductor to metallic transition in a continuous manner at pressures between 1.5-2.5GPa. The transition pressure at which the samples turn metallic increases with increase in percentage of Indium. This increase is a direct consequence of the increase in network rigidity with the addition of Indium. At a constant pressure of 0.5GPa, the normalized resistivity shows some signature of the existence of the intermediate phase. Samples recovered after a pressure cycle remain amorphous suggesting that the semi-conductor to metallic transition arises from a reduction of the band gap due to pressure or the movement of the Fermi level into the conduction or valence band.
Resumo:
This paper reports that the K x-ray spectra of the thin target 47Ag, 48Cd, 49In and 50Sn were measured by an HPGe semi-conductor detector in collisions with 84.5 MeV 6C4+ ions. Our experiment revealed the Kα x-ray energy shifts were not obvious and the Kβ1 x-ray energy shifts were about 90∼110 eV. The simple model of Burch et al has been previously used to calculate the K x-ray energy shifts due to an additional vacancy in 2p orbit. The present work extends the model of Burch to calculate the x-ray energy shifts of multiple ionized atoms induced by heavy ions with kinetic energy of MeV/u. In addition to our experimental results, many other experimental results are compared with the calculated values by using the model.
Resumo:
The influence of muffin-tin approximation on energy band gap was studied using LMTO-ASA (Linear Muffin-Tin Orbital-Atomic Sphere Approximation) approach. Since the diverse data are available for LaX(X=N, P, As, Sb), they are presented in our research as an example in order to test the reliability of our results. Four groups of muffin-tin radii were chosen, they were the fitted muffin-tin radii based on the optical properties of the crystals (the first), 1 : 1 for La : X(the second), 1.5 : 1 for La : X(the third), and a group of radii derived by making the charge in the interstitial space to be zero(the fourth). The results show that the fitted muffin-tin radii (the first group) give the best results compared with experimental values, and the predicted energy band gaps are very sensitive to the choice of muffin-tin radius in comparison with the other groups. The second and the third delivered results somewhere in between, while the fourth provided the worst results compared with the other groups. For the same crystal, with the increase of muffin-tin radius of lanthanum, the calculated energy band gaps decreased, going from semi-conductor to semimetal. This again clearly indicated the sensitivity of energy band structure on muffin-tin approximation.